Spaces:
Sleeping
Sleeping
import numpy as np | |
import h5py | |
import cv2 | |
def normalize_intrinsic(x, K): | |
# print(x,K) | |
return (x - K[:2, 2]) / np.diag(K)[:2] | |
def normalize_size(x, size, scale=1): | |
size = size.reshape([1, 2]) | |
norm_fac = size.max() | |
return (x - size / 2 + 0.5) / (norm_fac * scale) | |
def np_skew_symmetric(v): | |
zero = np.zeros_like(v[:, 0]) | |
M = np.stack( | |
[ | |
zero, | |
-v[:, 2], | |
v[:, 1], | |
v[:, 2], | |
zero, | |
-v[:, 0], | |
-v[:, 1], | |
v[:, 0], | |
zero, | |
], | |
axis=1, | |
) | |
return M | |
def draw_points(img, points, color=(0, 255, 0), radius=3): | |
dp = [(int(points[i, 0]), int(points[i, 1])) for i in range(points.shape[0])] | |
for i in range(points.shape[0]): | |
cv2.circle(img, dp[i], radius=radius, color=color) | |
return img | |
def draw_match( | |
img1, | |
img2, | |
corr1, | |
corr2, | |
inlier=[True], | |
color=None, | |
radius1=1, | |
radius2=1, | |
resize=None, | |
): | |
if resize is not None: | |
scale1, scale2 = [img1.shape[1] / resize[0], img1.shape[0] / resize[1]], [ | |
img2.shape[1] / resize[0], | |
img2.shape[0] / resize[1], | |
] | |
img1, img2 = cv2.resize(img1, resize, interpolation=cv2.INTER_AREA), cv2.resize( | |
img2, resize, interpolation=cv2.INTER_AREA | |
) | |
corr1, corr2 = ( | |
corr1 / np.asarray(scale1)[np.newaxis], | |
corr2 / np.asarray(scale2)[np.newaxis], | |
) | |
corr1_key = [ | |
cv2.KeyPoint(corr1[i, 0], corr1[i, 1], radius1) for i in range(corr1.shape[0]) | |
] | |
corr2_key = [ | |
cv2.KeyPoint(corr2[i, 0], corr2[i, 1], radius2) for i in range(corr2.shape[0]) | |
] | |
assert len(corr1) == len(corr2) | |
draw_matches = [cv2.DMatch(i, i, 0) for i in range(len(corr1))] | |
if color is None: | |
color = [(0, 255, 0) if cur_inlier else (0, 0, 255) for cur_inlier in inlier] | |
if len(color) == 1: | |
display = cv2.drawMatches( | |
img1, | |
corr1_key, | |
img2, | |
corr2_key, | |
draw_matches, | |
None, | |
matchColor=color[0], | |
singlePointColor=color[0], | |
flags=4, | |
) | |
else: | |
height, width = max(img1.shape[0], img2.shape[0]), img1.shape[1] + img2.shape[1] | |
display = np.zeros([height, width, 3], np.uint8) | |
display[: img1.shape[0], : img1.shape[1]] = img1 | |
display[: img2.shape[0], img1.shape[1] :] = img2 | |
for i in range(len(corr1)): | |
left_x, left_y, right_x, right_y = ( | |
int(corr1[i][0]), | |
int(corr1[i][1]), | |
int(corr2[i][0] + img1.shape[1]), | |
int(corr2[i][1]), | |
) | |
cur_color = (int(color[i][0]), int(color[i][1]), int(color[i][2])) | |
cv2.line( | |
display, | |
(left_x, left_y), | |
(right_x, right_y), | |
cur_color, | |
1, | |
lineType=cv2.LINE_AA, | |
) | |
return display | |