image-matching-webui / hloc /visualization.py
Realcat
update: sfm
57c1094
raw
history blame
6.16 kB
import pickle
import random
import numpy as np
import pycolmap
from matplotlib import cm
from .utils.io import read_image
from .utils.viz import (
add_text,
cm_RdGn,
plot_images,
plot_keypoints,
plot_matches,
)
def visualize_sfm_2d(
reconstruction,
image_dir,
color_by="visibility",
selected=[],
n=1,
seed=0,
dpi=75,
):
assert image_dir.exists()
if not isinstance(reconstruction, pycolmap.Reconstruction):
reconstruction = pycolmap.Reconstruction(reconstruction)
if not selected:
image_ids = reconstruction.reg_image_ids()
selected = random.Random(seed).sample(image_ids, min(n, len(image_ids)))
for i in selected:
image = reconstruction.images[i]
keypoints = np.array([p.xy for p in image.points2D])
visible = np.array([p.has_point3D() for p in image.points2D])
if color_by == "visibility":
color = [(0, 0, 1) if v else (1, 0, 0) for v in visible]
text = f"visible: {np.count_nonzero(visible)}/{len(visible)}"
elif color_by == "track_length":
tl = np.array(
[
(
reconstruction.points3D[p.point3D_id].track.length()
if p.has_point3D()
else 1
)
for p in image.points2D
]
)
max_, med_ = np.max(tl), np.median(tl[tl > 1])
tl = np.log(tl)
color = cm.jet(tl / tl.max()).tolist()
text = f"max/median track length: {max_}/{med_}"
elif color_by == "depth":
p3ids = [p.point3D_id for p in image.points2D if p.has_point3D()]
z = np.array(
[
(image.cam_from_world * reconstruction.points3D[j].xyz)[-1]
for j in p3ids
]
)
z -= z.min()
color = cm.jet(z / np.percentile(z, 99.9))
text = f"visible: {np.count_nonzero(visible)}/{len(visible)}"
keypoints = keypoints[visible]
else:
raise NotImplementedError(f"Coloring not implemented: {color_by}.")
name = image.name
fig = plot_images([read_image(image_dir / name)], dpi=dpi)
plot_keypoints([keypoints], colors=[color], ps=4)
add_text(0, text)
add_text(0, name, pos=(0.01, 0.01), fs=5, lcolor=None, va="bottom")
return fig
def visualize_loc(
results,
image_dir,
reconstruction=None,
db_image_dir=None,
selected=[],
n=1,
seed=0,
prefix=None,
**kwargs,
):
assert image_dir.exists()
with open(str(results) + "_logs.pkl", "rb") as f:
logs = pickle.load(f)
if not selected:
queries = list(logs["loc"].keys())
if prefix:
queries = [q for q in queries if q.startswith(prefix)]
selected = random.Random(seed).sample(queries, min(n, len(queries)))
if reconstruction is not None:
if not isinstance(reconstruction, pycolmap.Reconstruction):
reconstruction = pycolmap.Reconstruction(reconstruction)
for qname in selected:
loc = logs["loc"][qname]
visualize_loc_from_log(
image_dir, qname, loc, reconstruction, db_image_dir, **kwargs
)
def visualize_loc_from_log(
image_dir,
query_name,
loc,
reconstruction=None,
db_image_dir=None,
top_k_db=2,
dpi=75,
):
q_image = read_image(image_dir / query_name)
if loc.get("covisibility_clustering", False):
# select the first, largest cluster if the localization failed
loc = loc["log_clusters"][loc["best_cluster"] or 0]
inliers = np.array(loc["PnP_ret"]["inliers"])
mkp_q = loc["keypoints_query"]
n = len(loc["db"])
if reconstruction is not None:
# for each pair of query keypoint and its matched 3D point,
# we need to find its corresponding keypoint in each database image
# that observes it. We also count the number of inliers in each.
kp_idxs, kp_to_3D_to_db = loc["keypoint_index_to_db"]
counts = np.zeros(n)
dbs_kp_q_db = [[] for _ in range(n)]
inliers_dbs = [[] for _ in range(n)]
for i, (inl, (p3D_id, db_idxs)) in enumerate(
zip(inliers, kp_to_3D_to_db)
):
track = reconstruction.points3D[p3D_id].track
track = {el.image_id: el.point2D_idx for el in track.elements}
for db_idx in db_idxs:
counts[db_idx] += inl
kp_db = track[loc["db"][db_idx]]
dbs_kp_q_db[db_idx].append((i, kp_db))
inliers_dbs[db_idx].append(inl)
else:
# for inloc the database keypoints are already in the logs
assert "keypoints_db" in loc
assert "indices_db" in loc
counts = np.array(
[np.sum(loc["indices_db"][inliers] == i) for i in range(n)]
)
# display the database images with the most inlier matches
db_sort = np.argsort(-counts)
for db_idx in db_sort[:top_k_db]:
if reconstruction is not None:
db = reconstruction.images[loc["db"][db_idx]]
db_name = db.name
db_kp_q_db = np.array(dbs_kp_q_db[db_idx])
kp_q = mkp_q[db_kp_q_db[:, 0]]
kp_db = np.array([db.points2D[i].xy for i in db_kp_q_db[:, 1]])
inliers_db = inliers_dbs[db_idx]
else:
db_name = loc["db"][db_idx]
kp_q = mkp_q[loc["indices_db"] == db_idx]
kp_db = loc["keypoints_db"][loc["indices_db"] == db_idx]
inliers_db = inliers[loc["indices_db"] == db_idx]
db_image = read_image((db_image_dir or image_dir) / db_name)
color = cm_RdGn(inliers_db).tolist()
text = f"inliers: {sum(inliers_db)}/{len(inliers_db)}"
plot_images([q_image, db_image], dpi=dpi)
plot_matches(kp_q, kp_db, color, a=0.1)
add_text(0, text)
opts = dict(pos=(0.01, 0.01), fs=5, lcolor=None, va="bottom")
add_text(0, query_name, **opts)
add_text(1, db_name, **opts)