Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from einops.einops import rearrange | |
from .backbone import build_backbone | |
from .modules import LocalFeatureTransformer, FinePreprocess, TopicFormer | |
from .utils.coarse_matching import CoarseMatching | |
from .utils.fine_matching import FineMatching | |
class TopicFM(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
# Misc | |
self.config = config | |
# Modules | |
self.backbone = build_backbone(config) | |
self.loftr_coarse = TopicFormer(config["coarse"]) | |
self.coarse_matching = CoarseMatching(config["match_coarse"]) | |
self.fine_preprocess = FinePreprocess(config) | |
self.loftr_fine = LocalFeatureTransformer(config["fine"]) | |
self.fine_matching = FineMatching() | |
def forward(self, data): | |
""" | |
Update: | |
data (dict): { | |
'image0': (torch.Tensor): (N, 1, H, W) | |
'image1': (torch.Tensor): (N, 1, H, W) | |
'mask0'(optional) : (torch.Tensor): (N, H, W) '0' indicates a padded position | |
'mask1'(optional) : (torch.Tensor): (N, H, W) | |
} | |
""" | |
# 1. Local Feature CNN | |
data.update( | |
{ | |
"bs": data["image0"].size(0), | |
"hw0_i": data["image0"].shape[2:], | |
"hw1_i": data["image1"].shape[2:], | |
} | |
) | |
if data["hw0_i"] == data["hw1_i"]: # faster & better BN convergence | |
feats_c, feats_f = self.backbone( | |
torch.cat([data["image0"], data["image1"]], dim=0) | |
) | |
(feat_c0, feat_c1), (feat_f0, feat_f1) = feats_c.split( | |
data["bs"] | |
), feats_f.split(data["bs"]) | |
else: # handle different input shapes | |
(feat_c0, feat_f0), (feat_c1, feat_f1) = self.backbone( | |
data["image0"] | |
), self.backbone(data["image1"]) | |
data.update( | |
{ | |
"hw0_c": feat_c0.shape[2:], | |
"hw1_c": feat_c1.shape[2:], | |
"hw0_f": feat_f0.shape[2:], | |
"hw1_f": feat_f1.shape[2:], | |
} | |
) | |
# 2. coarse-level loftr module | |
feat_c0 = rearrange(feat_c0, "n c h w -> n (h w) c") | |
feat_c1 = rearrange(feat_c1, "n c h w -> n (h w) c") | |
mask_c0 = mask_c1 = None # mask is useful in training | |
if "mask0" in data: | |
mask_c0, mask_c1 = data["mask0"].flatten(-2), data["mask1"].flatten(-2) | |
feat_c0, feat_c1, conf_matrix, topic_matrix = self.loftr_coarse( | |
feat_c0, feat_c1, mask_c0, mask_c1 | |
) | |
data.update({"conf_matrix": conf_matrix, "topic_matrix": topic_matrix}) ###### | |
# 3. match coarse-level | |
self.coarse_matching(data) | |
# 4. fine-level refinement | |
feat_f0_unfold, feat_f1_unfold = self.fine_preprocess( | |
feat_f0, feat_f1, feat_c0.detach(), feat_c1.detach(), data | |
) | |
if feat_f0_unfold.size(0) != 0: # at least one coarse level predicted | |
feat_f0_unfold, feat_f1_unfold = self.loftr_fine( | |
feat_f0_unfold, feat_f1_unfold | |
) | |
# 5. match fine-level | |
self.fine_matching(feat_f0_unfold, feat_f1_unfold, data) | |
def load_state_dict(self, state_dict, *args, **kwargs): | |
for k in list(state_dict.keys()): | |
if k.startswith("matcher."): | |
state_dict[k.replace("matcher.", "", 1)] = state_dict.pop(k) | |
return super().load_state_dict(state_dict, *args, **kwargs) | |