Spaces:
Running
Running
# Standard libraries | |
import numpy as np | |
# PyTorch | |
import torch | |
import torch.nn as nn | |
import math | |
y_table = np.array( | |
[ | |
[16, 11, 10, 16, 24, 40, 51, 61], | |
[12, 12, 14, 19, 26, 58, 60, 55], | |
[14, 13, 16, 24, 40, 57, 69, 56], | |
[14, 17, 22, 29, 51, 87, 80, 62], | |
[18, 22, 37, 56, 68, 109, 103, 77], | |
[24, 35, 55, 64, 81, 104, 113, 92], | |
[49, 64, 78, 87, 103, 121, 120, 101], | |
[72, 92, 95, 98, 112, 100, 103, 99], | |
], | |
dtype=np.float32, | |
).T | |
y_table = nn.Parameter(torch.from_numpy(y_table)) | |
# | |
c_table = np.empty((8, 8), dtype=np.float32) | |
c_table.fill(99) | |
c_table[:4, :4] = np.array( | |
[[17, 18, 24, 47], [18, 21, 26, 66], [24, 26, 56, 99], [47, 66, 99, 99]] | |
).T | |
c_table = nn.Parameter(torch.from_numpy(c_table)) | |
def diff_round_back(x): | |
"""Differentiable rounding function | |
Input: | |
x(tensor) | |
Output: | |
x(tensor) | |
""" | |
return torch.round(x) + (x - torch.round(x)) ** 3 | |
def diff_round(input_tensor): | |
test = 0 | |
for n in range(1, 10): | |
test += math.pow(-1, n + 1) / n * torch.sin(2 * math.pi * n * input_tensor) | |
final_tensor = input_tensor - 1 / math.pi * test | |
return final_tensor | |
class Quant(torch.autograd.Function): | |
def forward(ctx, input): | |
input = torch.clamp(input, 0, 1) | |
output = (input * 255.0).round() / 255.0 | |
return output | |
def backward(ctx, grad_output): | |
return grad_output | |
class Quantization(nn.Module): | |
def __init__(self): | |
super(Quantization, self).__init__() | |
def forward(self, input): | |
return Quant.apply(input) | |
def quality_to_factor(quality): | |
"""Calculate factor corresponding to quality | |
Input: | |
quality(float): Quality for jpeg compression | |
Output: | |
factor(float): Compression factor | |
""" | |
if quality < 50: | |
quality = 5000.0 / quality | |
else: | |
quality = 200.0 - quality * 2 | |
return quality / 100.0 | |