Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn.parameter import Parameter | |
from .score import peakiness_score | |
class BaseNet(nn.Module): | |
"""Helper class to construct a fully-convolutional network that | |
extract a l2-normalized patch descriptor. | |
""" | |
def __init__(self, inchan=3, dilated=True, dilation=1, bn=True, bn_affine=False): | |
super(BaseNet, self).__init__() | |
self.inchan = inchan | |
self.curchan = inchan | |
self.dilated = dilated | |
self.dilation = dilation | |
self.bn = bn | |
self.bn_affine = bn_affine | |
def _make_bn(self, outd): | |
return nn.BatchNorm2d(outd, affine=self.bn_affine) | |
def _add_conv( | |
self, | |
outd, | |
k=3, | |
stride=1, | |
dilation=1, | |
bn=True, | |
relu=True, | |
k_pool=1, | |
pool_type="max", | |
bias=False, | |
): | |
# as in the original implementation, dilation is applied at the end of layer, so it will have impact only from next layer | |
d = self.dilation * dilation | |
# if self.dilated: | |
# conv_params = dict(padding=((k-1)*d)//2, dilation=d, stride=1) | |
# self.dilation *= stride | |
# else: | |
# conv_params = dict(padding=((k-1)*d)//2, dilation=d, stride=stride) | |
conv_params = dict( | |
padding=((k - 1) * d) // 2, dilation=d, stride=stride, bias=bias | |
) | |
ops = nn.ModuleList([]) | |
ops.append(nn.Conv2d(self.curchan, outd, kernel_size=k, **conv_params)) | |
if bn and self.bn: | |
ops.append(self._make_bn(outd)) | |
if relu: | |
ops.append(nn.ReLU(inplace=True)) | |
self.curchan = outd | |
if k_pool > 1: | |
if pool_type == "avg": | |
ops.append(torch.nn.AvgPool2d(kernel_size=k_pool)) | |
elif pool_type == "max": | |
ops.append(torch.nn.MaxPool2d(kernel_size=k_pool)) | |
else: | |
print(f"Error, unknown pooling type {pool_type}...") | |
return nn.Sequential(*ops) | |
class Quad_L2Net(BaseNet): | |
"""Same than L2_Net, but replace the final 8x8 conv by 3 successive 2x2 convs.""" | |
def __init__(self, dim=128, mchan=4, relu22=False, **kw): | |
BaseNet.__init__(self, **kw) | |
self.conv0 = self._add_conv(8 * mchan) | |
self.conv1 = self._add_conv(8 * mchan, bn=False) | |
self.bn1 = self._make_bn(8 * mchan) | |
self.conv2 = self._add_conv(16 * mchan, stride=2) | |
self.conv3 = self._add_conv(16 * mchan, bn=False) | |
self.bn3 = self._make_bn(16 * mchan) | |
self.conv4 = self._add_conv(32 * mchan, stride=2) | |
self.conv5 = self._add_conv(32 * mchan) | |
# replace last 8x8 convolution with 3 3x3 convolutions | |
self.conv6_0 = self._add_conv(32 * mchan) | |
self.conv6_1 = self._add_conv(32 * mchan) | |
self.conv6_2 = self._add_conv(dim, bn=False, relu=False) | |
self.out_dim = dim | |
self.moving_avg_params = nn.ParameterList( | |
[ | |
Parameter(torch.tensor(1.0), requires_grad=False), | |
Parameter(torch.tensor(1.0), requires_grad=False), | |
Parameter(torch.tensor(1.0), requires_grad=False), | |
] | |
) | |
def forward(self, x): | |
# x: [N, C, H, W] | |
x0 = self.conv0(x) | |
x1 = self.conv1(x0) | |
x1_bn = self.bn1(x1) | |
x2 = self.conv2(x1_bn) | |
x3 = self.conv3(x2) | |
x3_bn = self.bn3(x3) | |
x4 = self.conv4(x3_bn) | |
x5 = self.conv5(x4) | |
x6_0 = self.conv6_0(x5) | |
x6_1 = self.conv6_1(x6_0) | |
x6_2 = self.conv6_2(x6_1) | |
# calculate score map | |
comb_weights = torch.tensor([1.0, 2.0, 3.0], device=x.device) | |
comb_weights /= torch.sum(comb_weights) | |
ksize = [3, 2, 1] | |
det_score_maps = [] | |
for idx, xx in enumerate([x1, x3, x6_2]): | |
if self.training: | |
instance_max = torch.max(xx) | |
self.moving_avg_params[idx].data = ( | |
self.moving_avg_params[idx] * 0.99 + instance_max.detach() * 0.01 | |
) | |
else: | |
pass | |
alpha, beta = peakiness_score( | |
xx, self.moving_avg_params[idx].detach(), ksize=3, dilation=ksize[idx] | |
) | |
score_vol = alpha * beta | |
det_score_map = torch.max(score_vol, dim=1, keepdim=True)[0] | |
det_score_map = F.interpolate( | |
det_score_map, size=x.shape[2:], mode="bilinear", align_corners=True | |
) | |
det_score_map = comb_weights[idx] * det_score_map | |
det_score_maps.append(det_score_map) | |
det_score_map = torch.sum(torch.stack(det_score_maps, dim=0), dim=0) | |
# print([param.data for param in self.moving_avg_params]) | |
return x6_2, det_score_map, x1, x3 | |