Vincentqyw
fix: roma
c74a070
raw
history blame
5.83 kB
# Copyright 2019-present NAVER Corp.
# CC BY-NC-SA 3.0
# Available only for non-commercial use
import pdb
import numpy as np
import matplotlib.pyplot as pl
def make_colorwheel():
"""
Generates a color wheel for optical flow visualization as presented in:
Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf
According to the C++ source code of Daniel Scharstein
According to the Matlab source code of Deqing Sun
Copied from https://github.com/tomrunia/OpticalFlow_Visualization/blob/master/flow_vis.py
Copyright (c) 2018 Tom Runia
"""
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros((ncols, 3))
col = 0
# RY
colorwheel[0:RY, 0] = 255
colorwheel[0:RY, 1] = np.floor(255 * np.arange(0, RY) / RY)
col = col + RY
# YG
colorwheel[col : col + YG, 0] = 255 - np.floor(255 * np.arange(0, YG) / YG)
colorwheel[col : col + YG, 1] = 255
col = col + YG
# GC
colorwheel[col : col + GC, 1] = 255
colorwheel[col : col + GC, 2] = np.floor(255 * np.arange(0, GC) / GC)
col = col + GC
# CB
colorwheel[col : col + CB, 1] = 255 - np.floor(255 * np.arange(CB) / CB)
colorwheel[col : col + CB, 2] = 255
col = col + CB
# BM
colorwheel[col : col + BM, 2] = 255
colorwheel[col : col + BM, 0] = np.floor(255 * np.arange(0, BM) / BM)
col = col + BM
# MR
colorwheel[col : col + MR, 2] = 255 - np.floor(255 * np.arange(MR) / MR)
colorwheel[col : col + MR, 0] = 255
return colorwheel
def flow_compute_color(u, v, convert_to_bgr=False):
"""
Applies the flow color wheel to (possibly clipped) flow components u and v.
According to the C++ source code of Daniel Scharstein
According to the Matlab source code of Deqing Sun
:param u: np.ndarray, input horizontal flow
:param v: np.ndarray, input vertical flow
:param convert_to_bgr: bool, whether to change ordering and output BGR instead of RGB
:return:
Copied from https://github.com/tomrunia/OpticalFlow_Visualization/blob/master/flow_vis.py
Copyright (c) 2018 Tom Runia
"""
flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8)
colorwheel = make_colorwheel() # shape [55x3]
ncols = colorwheel.shape[0]
rad = np.sqrt(np.square(u) + np.square(v))
a = np.arctan2(-v, -u) / np.pi
fk = (a + 1) / 2 * (ncols - 1)
k0 = np.floor(fk).astype(np.int32)
k1 = k0 + 1
k1[k1 == ncols] = 0
f = fk - k0
for i in range(colorwheel.shape[1]):
tmp = colorwheel[:, i]
col0 = tmp[k0] / 255.0
col1 = tmp[k1] / 255.0
col = (1 - f) * col0 + f * col1
idx = rad <= 1
col[idx] = 1 - rad[idx] * (1 - col[idx])
col[~idx] = col[~idx] * 0.75 # out of range?
# Note the 2-i => BGR instead of RGB
ch_idx = 2 - i if convert_to_bgr else i
flow_image[:, :, ch_idx] = np.floor(255 * col)
return flow_image
def flow_to_color(flow_uv, clip_flow=None, convert_to_bgr=False):
"""
Expects a two dimensional flow image of shape [H,W,2]
According to the C++ source code of Daniel Scharstein
According to the Matlab source code of Deqing Sun
:param flow_uv: np.ndarray of shape [H,W,2]
:param clip_flow: float, maximum clipping value for flow
:return:
Copied from https://github.com/tomrunia/OpticalFlow_Visualization/blob/master/flow_vis.py
Copyright (c) 2018 Tom Runia
"""
assert flow_uv.ndim == 3, "input flow must have three dimensions"
assert flow_uv.shape[2] == 2, "input flow must have shape [H,W,2]"
if clip_flow is not None:
flow_uv = np.clip(flow_uv, 0, clip_flow)
u = flow_uv[:, :, 0]
v = flow_uv[:, :, 1]
rad = np.sqrt(np.square(u) + np.square(v))
rad_max = np.max(rad)
epsilon = 1e-5
u = u / (rad_max + epsilon)
v = v / (rad_max + epsilon)
return flow_compute_color(u, v, convert_to_bgr)
def show_flow(img0, img1, flow, mask=None):
img0 = np.asarray(img0)
img1 = np.asarray(img1)
if mask is None:
mask = 1
mask = np.asarray(mask)
if mask.ndim == 2:
mask = mask[:, :, None]
assert flow.ndim == 3
assert flow.shape[:2] == img0.shape[:2] and flow.shape[2] == 2
def noticks():
pl.xticks([])
pl.yticks([])
fig = pl.figure("showing correspondences")
ax1 = pl.subplot(221)
ax1.numaxis = 0
pl.imshow(img0 * mask)
noticks()
ax2 = pl.subplot(222)
ax2.numaxis = 1
pl.imshow(img1)
noticks()
ax = pl.subplot(212)
ax.numaxis = 0
flow_img = flow_to_color(np.where(np.isnan(flow), 0, flow))
pl.imshow(flow_img * mask)
noticks()
pl.subplots_adjust(0.01, 0.01, 0.99, 0.99, wspace=0.02, hspace=0.02)
def motion_notify_callback(event):
if event.inaxes is None:
return
x, y = event.xdata, event.ydata
ax1.lines = []
ax2.lines = []
try:
x, y = int(x + 0.5), int(y + 0.5)
ax1.plot(x, y, "+", ms=10, mew=2, color="blue", scalex=False, scaley=False)
x, y = flow[y, x] + (x, y)
ax2.plot(x, y, "+", ms=10, mew=2, color="red", scalex=False, scaley=False)
# we redraw only the concerned axes
renderer = fig.canvas.get_renderer()
ax1.draw(renderer)
ax2.draw(renderer)
fig.canvas.blit(ax1.bbox)
fig.canvas.blit(ax2.bbox)
except IndexError:
return
cid_move = fig.canvas.mpl_connect("motion_notify_event", motion_notify_callback)
print("Move your mouse over the images to show matches (ctrl-C to quit)")
pl.show()