Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from ..lanet_utils import image_grid | |
class ConvBlock(nn.Module): | |
def __init__(self, in_channels, out_channels): | |
super(ConvBlock, self).__init__() | |
self.conv = nn.Sequential( | |
nn.Conv2d( | |
in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=False, | |
), | |
nn.BatchNorm2d(out_channels), | |
nn.ReLU(inplace=True), | |
nn.Conv2d( | |
out_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=False, | |
), | |
nn.BatchNorm2d(out_channels), | |
nn.ReLU(inplace=True), | |
) | |
def forward(self, x): | |
return self.conv(x) | |
class DilationConv3x3(nn.Module): | |
def __init__(self, in_channels, out_channels): | |
super(DilationConv3x3, self).__init__() | |
self.conv = nn.Conv2d( | |
in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=2, | |
dilation=2, | |
bias=False, | |
) | |
self.bn = nn.BatchNorm2d(out_channels) | |
def forward(self, x): | |
x = self.conv(x) | |
x = self.bn(x) | |
return x | |
class InterestPointModule(nn.Module): | |
def __init__(self, is_test=False): | |
super(InterestPointModule, self).__init__() | |
self.is_test = is_test | |
self.conv1 = ConvBlock(3, 32) | |
self.conv2 = ConvBlock(32, 64) | |
self.conv3 = ConvBlock(64, 128) | |
self.conv4 = ConvBlock(128, 256) | |
self.maxpool2x2 = nn.MaxPool2d(2, 2) | |
# score head | |
self.score_conv = nn.Conv2d( | |
256, 256, kernel_size=3, stride=1, padding=1, bias=False | |
) | |
self.score_norm = nn.BatchNorm2d(256) | |
self.score_out = nn.Conv2d(256, 3, kernel_size=3, stride=1, padding=1) | |
self.softmax = nn.Softmax(dim=1) | |
# location head | |
self.loc_conv = nn.Conv2d( | |
256, 256, kernel_size=3, stride=1, padding=1, bias=False | |
) | |
self.loc_norm = nn.BatchNorm2d(256) | |
self.loc_out = nn.Conv2d(256, 2, kernel_size=3, stride=1, padding=1) | |
# descriptor out | |
self.des_conv2 = DilationConv3x3(64, 256) | |
self.des_conv3 = DilationConv3x3(128, 256) | |
# cross_head: | |
self.shift_out = nn.Conv2d(256, 1, kernel_size=3, stride=1, padding=1) | |
self.relu = nn.ReLU(inplace=True) | |
def forward(self, x): | |
B, _, H, W = x.shape | |
x = self.conv1(x) | |
x = self.maxpool2x2(x) | |
x2 = self.conv2(x) | |
x = self.maxpool2x2(x2) | |
x3 = self.conv3(x) | |
x = self.maxpool2x2(x3) | |
x = self.conv4(x) | |
B, _, Hc, Wc = x.shape | |
# score head | |
score_x = self.score_out(self.relu(self.score_norm(self.score_conv(x)))) | |
aware = self.softmax(score_x[:, 0:2, :, :]) | |
score = score_x[:, 2, :, :].unsqueeze(1).sigmoid() | |
border_mask = torch.ones(B, Hc, Wc) | |
border_mask[:, 0] = 0 | |
border_mask[:, Hc - 1] = 0 | |
border_mask[:, :, 0] = 0 | |
border_mask[:, :, Wc - 1] = 0 | |
border_mask = border_mask.unsqueeze(1) | |
score = score * border_mask.to(score.device) | |
# location head | |
coord_x = self.relu(self.loc_norm(self.loc_conv(x))) | |
coord_cell = self.loc_out(coord_x).tanh() | |
shift_ratio = self.shift_out(coord_x).sigmoid() * 2.0 | |
step = ((H / Hc) - 1) / 2.0 | |
center_base = ( | |
image_grid( | |
B, | |
Hc, | |
Wc, | |
dtype=coord_cell.dtype, | |
device=coord_cell.device, | |
ones=False, | |
normalized=False, | |
).mul(H / Hc) | |
+ step | |
) | |
coord_un = center_base.add(coord_cell.mul(shift_ratio * step)) | |
coord = coord_un.clone() | |
coord[:, 0] = torch.clamp(coord_un[:, 0], min=0, max=W - 1) | |
coord[:, 1] = torch.clamp(coord_un[:, 1], min=0, max=H - 1) | |
# descriptor block | |
desc_block = [] | |
desc_block.append(self.des_conv2(x2)) | |
desc_block.append(self.des_conv3(x3)) | |
desc_block.append(aware) | |
if self.is_test: | |
coord_norm = coord[:, :2].clone() | |
coord_norm[:, 0] = (coord_norm[:, 0] / (float(W - 1) / 2.0)) - 1.0 | |
coord_norm[:, 1] = (coord_norm[:, 1] / (float(H - 1) / 2.0)) - 1.0 | |
coord_norm = coord_norm.permute(0, 2, 3, 1) | |
desc2 = torch.nn.functional.grid_sample(desc_block[0], coord_norm) | |
desc3 = torch.nn.functional.grid_sample(desc_block[1], coord_norm) | |
aware = desc_block[2] | |
desc = torch.mul(desc2, aware[:, 0, :, :]) + torch.mul( | |
desc3, aware[:, 1, :, :] | |
) | |
desc = desc.div( | |
torch.unsqueeze(torch.norm(desc, p=2, dim=1), 1) | |
) # Divide by norm to normalize. | |
return score, coord, desc | |
return score, coord, desc_block | |
class CorrespondenceModule(nn.Module): | |
def __init__(self, match_type="dual_softmax"): | |
super(CorrespondenceModule, self).__init__() | |
self.match_type = match_type | |
if self.match_type == "dual_softmax": | |
self.temperature = 0.1 | |
else: | |
raise NotImplementedError() | |
def forward(self, source_desc, target_desc): | |
b, c, h, w = source_desc.size() | |
source_desc = source_desc.div( | |
torch.unsqueeze(torch.norm(source_desc, p=2, dim=1), 1) | |
).view(b, -1, h * w) | |
target_desc = target_desc.div( | |
torch.unsqueeze(torch.norm(target_desc, p=2, dim=1), 1) | |
).view(b, -1, h * w) | |
if self.match_type == "dual_softmax": | |
sim_mat = ( | |
torch.einsum("bcm, bcn -> bmn", source_desc, target_desc) | |
/ self.temperature | |
) | |
confidence_matrix = F.softmax(sim_mat, 1) * F.softmax(sim_mat, 2) | |
else: | |
raise NotImplementedError() | |
return confidence_matrix | |