#
RoMa đïž:
Robust Dense Feature Matching
âCVPR 2024â
Johan Edstedt
·
Qiyu Sun
·
Georg Bökman
·
MÄrten WadenbÀck
·
Michael Felsberg
Paper |
Project Page
RoMa is the robust dense feature matcher capable of estimating pixel-dense warps and reliable certainties for almost any image pair.
## Setup/Install
In your python environment (tested on Linux python 3.10), run:
```bash
pip install -e .
```
## Demo / How to Use
We provide two demos in the [demos folder](demo).
Here's the gist of it:
```python
from romatch import roma_outdoor
roma_model = roma_outdoor(device=device)
# Match
warp, certainty = roma_model.match(imA_path, imB_path, device=device)
# Sample matches for estimation
matches, certainty = roma_model.sample(warp, certainty)
# Convert to pixel coordinates (RoMa produces matches in [-1,1]x[-1,1])
kptsA, kptsB = roma_model.to_pixel_coordinates(matches, H_A, W_A, H_B, W_B)
# Find a fundamental matrix (or anything else of interest)
F, mask = cv2.findFundamentalMat(
kptsA.cpu().numpy(), kptsB.cpu().numpy(), ransacReprojThreshold=0.2, method=cv2.USAC_MAGSAC, confidence=0.999999, maxIters=10000
)
```
**New**: You can also match arbitrary keypoints with RoMa. See [match_keypoints](romatch/models/matcher.py) in RegressionMatcher.
## Settings
### Resolution
By default RoMa uses an initial resolution of (560,560) which is then upsampled to (864,864).
You can change this at construction (see roma_outdoor kwargs).
You can also change this later, by changing the roma_model.w_resized, roma_model.h_resized, and roma_model.upsample_res.
### Sampling
roma_model.sample_thresh controls the thresholding used when sampling matches for estimation. In certain cases a lower or higher threshold may improve results.
## Reproducing Results
The experiments in the paper are provided in the [experiments folder](experiments).
### Training
1. First follow the instructions provided here: https://github.com/Parskatt/DKM for downloading and preprocessing datasets.
2. Run the relevant experiment, e.g.,
```bash
torchrun --nproc_per_node=4 --nnodes=1 --rdzv_backend=c10d experiments/roma_outdoor.py
```
### Testing
```bash
python experiments/roma_outdoor.py --only_test --benchmark mega-1500
```
## License
All our code except DINOv2 is MIT license.
DINOv2 has an Apache 2 license [DINOv2](https://github.com/facebookresearch/dinov2/blob/main/LICENSE).
## Acknowledgement
Our codebase builds on the code in [DKM](https://github.com/Parskatt/DKM).
## Tiny RoMa
If you find that RoMa is too heavy, you might want to try Tiny RoMa which is built on top of XFeat.
```python
from romatch import tiny_roma_v1_outdoor
tiny_roma_model = tiny_roma_v1_outdoor(device=device)
```
Mega1500:
| | AUC@5 | AUC@10 | AUC@20 |
|----------|----------|----------|----------|
| XFeat | 46.4 | 58.9 | 69.2 |
| XFeat* | 51.9 | 67.2 | 78.9 |
| Tiny RoMa v1 | 56.4 | 69.5 | 79.5 |
| RoMa | - | - | - |
Mega-8-Scenes (See DKM):
| | AUC@5 | AUC@10 | AUC@20 |
|----------|----------|----------|----------|
| XFeat | - | - | - |
| XFeat* | 50.1 | 64.4 | 75.2 |
| Tiny RoMa v1 | 57.7 | 70.5 | 79.6 |
| RoMa | - | - | - |
IMC22 :'):
| | mAA@10 |
|----------|----------|
| XFeat | 42.1 |
| XFeat* | - |
| Tiny RoMa v1 | 42.2 |
| RoMa | - |
## BibTeX
If you find our models useful, please consider citing our paper!
```
@article{edstedt2024roma,
title={{RoMa: Robust Dense Feature Matching}},
author={Edstedt, Johan and Sun, Qiyu and Bökman, Georg and WadenbÀck, MÄrten and Felsberg, Michael},
journal={IEEE Conference on Computer Vision and Pattern Recognition},
year={2024}
}
```