import os from PIL import Image import h5py import numpy as np import torch import torchvision.transforms.functional as tvf import kornia.augmentation as K from romatch.utils import get_depth_tuple_transform_ops, get_tuple_transform_ops import romatch from romatch.utils import * import math class MegadepthScene: def __init__( self, data_root, scene_info, ht=384, wt=512, min_overlap=0.0, max_overlap=1.0, shake_t=0, rot_prob=0.0, normalize=True, max_num_pairs = 100_000, scene_name = None, use_horizontal_flip_aug = False, use_single_horizontal_flip_aug = False, colorjiggle_params = None, random_eraser = None, use_randaug = False, randaug_params = None, randomize_size = False, ) -> None: self.data_root = data_root self.scene_name = os.path.splitext(scene_name)[0]+f"_{min_overlap}_{max_overlap}" self.image_paths = scene_info["image_paths"] self.depth_paths = scene_info["depth_paths"] self.intrinsics = scene_info["intrinsics"] self.poses = scene_info["poses"] self.pairs = scene_info["pairs"] self.overlaps = scene_info["overlaps"] threshold = (self.overlaps > min_overlap) & (self.overlaps < max_overlap) self.pairs = self.pairs[threshold] self.overlaps = self.overlaps[threshold] if len(self.pairs) > max_num_pairs: pairinds = np.random.choice( np.arange(0, len(self.pairs)), max_num_pairs, replace=False ) self.pairs = self.pairs[pairinds] self.overlaps = self.overlaps[pairinds] if randomize_size: area = ht * wt s = int(16 * (math.sqrt(area)//16)) sizes = ((ht,wt), (s,s), (wt,ht)) choice = romatch.RANK % 3 ht, wt = sizes[choice] # counts, bins = np.histogram(self.overlaps,20) # print(counts) self.im_transform_ops = get_tuple_transform_ops( resize=(ht, wt), normalize=normalize, colorjiggle_params = colorjiggle_params, ) self.depth_transform_ops = get_depth_tuple_transform_ops( resize=(ht, wt) ) self.wt, self.ht = wt, ht self.shake_t = shake_t self.random_eraser = random_eraser if use_horizontal_flip_aug and use_single_horizontal_flip_aug: raise ValueError("Can't both flip both images and only flip one") self.use_horizontal_flip_aug = use_horizontal_flip_aug self.use_single_horizontal_flip_aug = use_single_horizontal_flip_aug self.use_randaug = use_randaug def load_im(self, im_path): im = Image.open(im_path) return im def horizontal_flip(self, im_A, im_B, depth_A, depth_B, K_A, K_B): im_A = im_A.flip(-1) im_B = im_B.flip(-1) depth_A, depth_B = depth_A.flip(-1), depth_B.flip(-1) flip_mat = torch.tensor([[-1, 0, self.wt],[0,1,0],[0,0,1.]]).to(K_A.device) K_A = flip_mat@K_A K_B = flip_mat@K_B return im_A, im_B, depth_A, depth_B, K_A, K_B def load_depth(self, depth_ref, crop=None): depth = np.array(h5py.File(depth_ref, "r")["depth"]) return torch.from_numpy(depth) def __len__(self): return len(self.pairs) def scale_intrinsic(self, K, wi, hi): sx, sy = self.wt / wi, self.ht / hi sK = torch.tensor([[sx, 0, 0], [0, sy, 0], [0, 0, 1]]) return sK @ K def rand_shake(self, *things): t = np.random.choice(range(-self.shake_t, self.shake_t + 1), size=2) return [ tvf.affine(thing, angle=0.0, translate=list(t), scale=1.0, shear=[0.0, 0.0]) for thing in things ], t def __getitem__(self, pair_idx): # read intrinsics of original size idx1, idx2 = self.pairs[pair_idx] K1 = torch.tensor(self.intrinsics[idx1].copy(), dtype=torch.float).reshape(3, 3) K2 = torch.tensor(self.intrinsics[idx2].copy(), dtype=torch.float).reshape(3, 3) # read and compute relative poses T1 = self.poses[idx1] T2 = self.poses[idx2] T_1to2 = torch.tensor(np.matmul(T2, np.linalg.inv(T1)), dtype=torch.float)[ :4, :4 ] # (4, 4) # Load positive pair data im_A, im_B = self.image_paths[idx1], self.image_paths[idx2] depth1, depth2 = self.depth_paths[idx1], self.depth_paths[idx2] im_A_ref = os.path.join(self.data_root, im_A) im_B_ref = os.path.join(self.data_root, im_B) depth_A_ref = os.path.join(self.data_root, depth1) depth_B_ref = os.path.join(self.data_root, depth2) im_A = self.load_im(im_A_ref) im_B = self.load_im(im_B_ref) K1 = self.scale_intrinsic(K1, im_A.width, im_A.height) K2 = self.scale_intrinsic(K2, im_B.width, im_B.height) if self.use_randaug: im_A, im_B = self.rand_augment(im_A, im_B) depth_A = self.load_depth(depth_A_ref) depth_B = self.load_depth(depth_B_ref) # Process images im_A, im_B = self.im_transform_ops((im_A, im_B)) depth_A, depth_B = self.depth_transform_ops( (depth_A[None, None], depth_B[None, None]) ) [im_A, im_B, depth_A, depth_B], t = self.rand_shake(im_A, im_B, depth_A, depth_B) K1[:2, 2] += t K2[:2, 2] += t im_A, im_B = im_A[None], im_B[None] if self.random_eraser is not None: im_A, depth_A = self.random_eraser(im_A, depth_A) im_B, depth_B = self.random_eraser(im_B, depth_B) if self.use_horizontal_flip_aug: if np.random.rand() > 0.5: im_A, im_B, depth_A, depth_B, K1, K2 = self.horizontal_flip(im_A, im_B, depth_A, depth_B, K1, K2) if self.use_single_horizontal_flip_aug: if np.random.rand() > 0.5: im_B, depth_B, K2 = self.single_horizontal_flip(im_B, depth_B, K2) if romatch.DEBUG_MODE: tensor_to_pil(im_A[0], unnormalize=True).save( f"vis/im_A.jpg") tensor_to_pil(im_B[0], unnormalize=True).save( f"vis/im_B.jpg") data_dict = { "im_A": im_A[0], "im_A_identifier": self.image_paths[idx1].split("/")[-1].split(".jpg")[0], "im_B": im_B[0], "im_B_identifier": self.image_paths[idx2].split("/")[-1].split(".jpg")[0], "im_A_depth": depth_A[0, 0], "im_B_depth": depth_B[0, 0], "K1": K1, "K2": K2, "T_1to2": T_1to2, "im_A_path": im_A_ref, "im_B_path": im_B_ref, } return data_dict class MegadepthBuilder: def __init__(self, data_root="data/megadepth", loftr_ignore=True, imc21_ignore = True) -> None: self.data_root = data_root self.scene_info_root = os.path.join(data_root, "prep_scene_info") self.all_scenes = os.listdir(self.scene_info_root) self.test_scenes = ["0017.npy", "0004.npy", "0048.npy", "0013.npy"] # LoFTR did the D2-net preprocessing differently than we did and got more ignore scenes, can optionially ignore those self.loftr_ignore_scenes = set(['0121.npy', '0133.npy', '0168.npy', '0178.npy', '0229.npy', '0349.npy', '0412.npy', '0430.npy', '0443.npy', '1001.npy', '5014.npy', '5015.npy', '5016.npy']) self.imc21_scenes = set(['0008.npy', '0019.npy', '0021.npy', '0024.npy', '0025.npy', '0032.npy', '0063.npy', '1589.npy']) self.test_scenes_loftr = ["0015.npy", "0022.npy"] self.loftr_ignore = loftr_ignore self.imc21_ignore = imc21_ignore def build_scenes(self, split="train", min_overlap=0.0, scene_names = None, **kwargs): if split == "train": scene_names = set(self.all_scenes) - set(self.test_scenes) elif split == "train_loftr": scene_names = set(self.all_scenes) - set(self.test_scenes_loftr) elif split == "test": scene_names = self.test_scenes elif split == "test_loftr": scene_names = self.test_scenes_loftr elif split == "custom": scene_names = scene_names else: raise ValueError(f"Split {split} not available") scenes = [] for scene_name in scene_names: if self.loftr_ignore and scene_name in self.loftr_ignore_scenes: continue if self.imc21_ignore and scene_name in self.imc21_scenes: continue if ".npy" not in scene_name: continue scene_info = np.load( os.path.join(self.scene_info_root, scene_name), allow_pickle=True ).item() scenes.append( MegadepthScene( self.data_root, scene_info, min_overlap=min_overlap,scene_name = scene_name, **kwargs ) ) return scenes def weight_scenes(self, concat_dataset, alpha=0.5): ns = [] for d in concat_dataset.datasets: ns.append(len(d)) ws = torch.cat([torch.ones(n) / n**alpha for n in ns]) return ws