from argparse import Namespace import os import torch import cv2 from .base import Viz from src.utils.metrics import compute_symmetrical_epipolar_errors, compute_pose_errors from third_party.loftr.src.loftr import LoFTR, default_cfg class VizLoFTR(Viz): def __init__(self, args): super().__init__() if type(args) == dict: args = Namespace(**args) self.match_threshold = args.match_threshold # Load model conf = dict(default_cfg) conf["match_coarse"]["thr"] = self.match_threshold print(conf) self.model = LoFTR(config=conf) ckpt_dict = torch.load(args.ckpt) self.model.load_state_dict(ckpt_dict["state_dict"]) self.model = self.model.eval().to(self.device) # Name the method # self.ckpt_name = args.ckpt.split('/')[-1].split('.')[0] self.name = "LoFTR" print(f"Initialize {self.name}") def match_and_draw( self, data_dict, root_dir=None, ground_truth=False, measure_time=False, viz_matches=True, ): if measure_time: torch.cuda.synchronize() start = torch.cuda.Event(enable_timing=True) end = torch.cuda.Event(enable_timing=True) start.record() self.model(data_dict) if measure_time: torch.cuda.synchronize() end.record() torch.cuda.synchronize() self.time_stats.append(start.elapsed_time(end)) kpts0 = data_dict["mkpts0_f"].cpu().numpy() kpts1 = data_dict["mkpts1_f"].cpu().numpy() img_name0, img_name1 = list(zip(*data_dict["pair_names"]))[0] img0 = cv2.imread(os.path.join(root_dir, img_name0)) img1 = cv2.imread(os.path.join(root_dir, img_name1)) if str(data_dict["dataset_name"][0]).lower() == "scannet": img0 = cv2.resize(img0, (640, 480)) img1 = cv2.resize(img1, (640, 480)) if viz_matches: saved_name = "_".join( [ img_name0.split("/")[-1].split(".")[0], img_name1.split("/")[-1].split(".")[0], ] ) folder_matches = os.path.join(root_dir, "{}_viz_matches".format(self.name)) if not os.path.exists(folder_matches): os.makedirs(folder_matches) path_to_save_matches = os.path.join( folder_matches, "{}.png".format(saved_name) ) if ground_truth: compute_symmetrical_epipolar_errors( data_dict ) # compute epi_errs for each match compute_pose_errors( data_dict ) # compute R_errs, t_errs, pose_errs for each pair epi_errors = data_dict["epi_errs"].cpu().numpy() R_errors, t_errors = data_dict["R_errs"][0], data_dict["t_errs"][0] self.draw_matches( kpts0, kpts1, img0, img1, epi_errors, path=path_to_save_matches, R_errs=R_errors, t_errs=t_errors, ) rel_pair_names = list(zip(*data_dict["pair_names"])) bs = data_dict["image0"].size(0) metrics = { # to filter duplicate pairs caused by DistributedSampler "identifiers": ["#".join(rel_pair_names[b]) for b in range(bs)], "epi_errs": [ data_dict["epi_errs"][data_dict["m_bids"] == b].cpu().numpy() for b in range(bs) ], "R_errs": data_dict["R_errs"], "t_errs": data_dict["t_errs"], "inliers": data_dict["inliers"], } self.eval_stats.append({"metrics": metrics}) else: m_conf = 1 - data_dict["mconf"].cpu().numpy() self.draw_matches( kpts0, kpts1, img0, img1, m_conf, path=path_to_save_matches, conf_thr=0.4, )