File size: 43,943 Bytes
53c1e6e 3e27b3e 53c1e6e 4f58dd2 172c210 c10e71a f13c68c 53c1e6e 17090f3 03b43e9 6630ef4 ff8f5cb 53c1e6e 0e3b560 4f58dd2 53c1e6e a9aaca0 44ac339 a9aaca0 106ce34 a9aaca0 a24aec5 a9aaca0 1c5abdf a9aaca0 44ac339 1bae5e6 44ac339 a9aaca0 44ac339 a9aaca0 44ac339 a9aaca0 c4ca285 a9aaca0 53c1e6e 7068031 f13c68c 53c1e6e 0484b8c 53c1e6e 44ac339 53c1e6e a9aaca0 53c1e6e a9aaca0 53c1e6e a9aaca0 53c1e6e a9aaca0 53c1e6e a9aaca0 53c1e6e 3e27b3e 53c1e6e 11afe3b 53c1e6e 11afe3b 53c1e6e 3965ed9 fd92630 1b8bc30 34a9bf9 1b8bc30 53c1e6e e470146 53c1e6e 6630ef4 53c1e6e 11afe3b 53c1e6e c10e71a 53c1e6e 11afe3b ea1e5ba 53c1e6e 6630ef4 53c1e6e 867b96b 08be887 53c1e6e 5cbd9e7 1821e50 d3e8e32 1821e50 08be887 53c1e6e ee56a96 34a9bf9 3284c98 34a9bf9 53c1e6e 42ce6d2 92cafd3 03b43e9 42ce6d2 d338a84 3965ed9 53c1e6e 4dcc0c1 53c1e6e 4dcc0c1 53c1e6e 3965ed9 02a9af1 03b43e9 02a9af1 ac5ec86 fbb3ef2 3965ed9 fbb3ef2 02a9af1 fbb3ef2 b3b2261 7fa432c b3b2261 46ec870 03b43e9 ebdec97 c968311 0978691 6313efa 03b43e9 a9aaca0 03b43e9 3965ed9 f27f206 03b43e9 53c1e6e a6e8ae8 db9c00f 576bad0 3965ed9 1b8bc30 44ac339 1b8bc30 53c1e6e 1b8bc30 53c1e6e 1b8bc30 53c1e6e 1b8bc30 e59bd75 1b8bc30 53c1e6e 1b8bc30 53c1e6e 1b8bc30 53c1e6e 1b8bc30 53c1e6e 1b8bc30 53c1e6e 1b8bc30 53c1e6e 1b8bc30 53c1e6e 1b8bc30 03b43e9 53c1e6e 1b8bc30 03b43e9 1b8bc30 53c1e6e 1b8bc30 03b43e9 53c1e6e 1b8bc30 03b43e9 f4416a9 1b8bc30 11afe3b 1b8bc30 11afe3b 1b8bc30 11afe3b 1b8bc30 3965ed9 1b8bc30 f4416a9 3965ed9 53c1e6e 054782c fbb3ef2 3965ed9 fbb3ef2 3965ed9 03b43e9 f6521a5 fbb3ef2 b3b2261 f6521a5 b3b2261 53c1e6e f6521a5 53c1e6e f6521a5 53c1e6e 03b43e9 53c1e6e 03b43e9 53c1e6e 0484b8c 03b43e9 53c1e6e 03b43e9 42ce6d2 03b43e9 53c1e6e 03b43e9 53c1e6e 11afe3b 53c1e6e 11afe3b 53c1e6e 3965ed9 53c1e6e 03b43e9 53c1e6e 3965ed9 53c1e6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 |
import gradio as gr
from PIL import Image
import requests
import subprocess
from transformers import Blip2Processor, Blip2ForConditionalGeneration
from huggingface_hub import snapshot_download, HfApi
import torch
import uuid
import os
import shutil
import json
import random
from slugify import slugify
import argparse
import importlib
import sys
from pathlib import Path
import spaces
import zipfile
MAX_IMAGES = 100
training_script_url = "https://raw.githubusercontent.com/huggingface/diffusers/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py"
subprocess.run(['wget', '-N', training_script_url])
orchestrator_script_url = "https://huggingface.co/datasets/multimodalart/lora-ease-helper/raw/main/script.py"
subprocess.run(['wget', '-N', orchestrator_script_url])
device = "cuda" if torch.cuda.is_available() else "cpu"
FACES_DATASET_PATH = snapshot_download(repo_id="multimodalart/faces-prior-preservation", repo_type="dataset")
#Delete .gitattributes to process things properly
Path(FACES_DATASET_PATH, '.gitattributes').unlink(missing_ok=True)
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2ForConditionalGeneration.from_pretrained(
"Salesforce/blip2-opt-2.7b", device_map={"": 0}, torch_dtype=torch.float16
)
training_option_settings = {
"face": {
"rank": 32,
"lr_scheduler": "constant",
"with_prior_preservation": True,
"class_prompt": "a photo of a person",
"train_steps_multiplier": 75,
"file_count": 150,
"dataset_path": FACES_DATASET_PATH
},
"style": {
"rank": 32,
"lr_scheduler": "constant",
"with_prior_preservation": False,
"class_prompt": "",
"train_steps_multiplier": 75
},
"character": {
"rank": 32,
"lr_scheduler": "constant",
"with_prior_preservation": False,
"class_prompt": "",
"train_steps_multiplier": 180
},
"object": {
"rank": 16,
"lr_scheduler": "constant",
"with_prior_preservation": False,
"class_prompt": "",
"train_steps_multiplier": 50
},
"custom": {
"rank": 32,
"lr_scheduler": "constant",
"with_prior_preservation": False,
"class_prompt": "",
"train_steps_multiplier": 150
}
}
num_images_settings = {
#>24 images, 1 repeat; 10<x<24 images 2 repeats; <10 images 3 repeats
"repeats": [(24, 1), (10, 2), (0, 3)],
"train_steps_min": 500,
"train_steps_max": 1500
}
def load_captioning(uploaded_images, option):
updates = []
if len(uploaded_images) <= 1:
raise gr.Error(
"Error: please upload at least 2 images to train your model (the ideal number with default settings is between 4-30)"
)
if len(uploaded_images) > MAX_IMAGES:
raise gr.Error(
f"Error: for now, only {MAX_IMAGES} or less images are allowed for training"
)
# Update for the captioning_area
for _ in range(3):
updates.append(gr.update(visible=True))
# Update visibility and image for each captioning row and image
for i in range(1, MAX_IMAGES + 1):
# Determine if the current row and image should be visible
visible = i <= len(uploaded_images)
# Update visibility of the captioning row
updates.append(gr.update(visible=visible))
# Update for image component - display image if available, otherwise hide
image_value = uploaded_images[i - 1] if visible else None
updates.append(gr.update(value=image_value, visible=visible))
text_value = option if visible else None
updates.append(gr.update(value=text_value, visible=visible))
return updates
def check_removed_and_restart(images):
visible = bool(images)
return [gr.update(visible=visible) for _ in range(3)]
def make_options_visible(option):
if (option == "object") or (option == "face"):
sentence = "A photo of TOK"
elif option == "style":
sentence = "in the style of TOK"
elif option == "character":
sentence = "A TOK character"
elif option == "custom":
sentence = "TOK"
return (
gr.update(value=sentence, visible=True),
gr.update(visible=True),
)
def change_defaults(option, images):
settings = training_option_settings.get(option, training_option_settings["custom"])
num_images = len(images)
# Calculate max_train_steps
train_steps_multiplier = settings["train_steps_multiplier"]
max_train_steps = max(num_images * train_steps_multiplier, num_images_settings["train_steps_min"])
max_train_steps = min(max_train_steps, num_images_settings["train_steps_max"])
# Determine repeats based on number of images
repeats = next(repeats for num, repeats in num_images_settings["repeats"] if num_images > num)
random_files = []
if settings["with_prior_preservation"]:
directory = settings["dataset_path"]
file_count = settings["file_count"]
files = [os.path.join(directory, file) for file in os.listdir(directory) if os.path.isfile(os.path.join(directory, file))]
random_files = random.sample(files, min(len(files), file_count))
return max_train_steps, repeats, settings["lr_scheduler"], settings["rank"], settings["with_prior_preservation"], settings["class_prompt"], random_files
def create_dataset(*inputs):
print("Creating dataset")
images = inputs[0]
destination_folder = str(uuid.uuid4())
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
jsonl_file_path = os.path.join(destination_folder, 'metadata.jsonl')
with open(jsonl_file_path, 'a') as jsonl_file:
for index, image in enumerate(images):
new_image_path = shutil.copy(image, destination_folder)
original_caption = inputs[index + 1]
file_name = os.path.basename(new_image_path)
data = {"file_name": file_name, "prompt": original_caption}
jsonl_file.write(json.dumps(data) + "\n")
return destination_folder
def start_training(
lora_name,
training_option,
concept_sentence,
optimizer,
use_snr_gamma,
snr_gamma,
mixed_precision,
learning_rate,
train_batch_size,
max_train_steps,
lora_rank,
repeats,
with_prior_preservation,
class_prompt,
class_images,
num_class_images,
train_text_encoder_ti,
train_text_encoder_ti_frac,
num_new_tokens_per_abstraction,
train_text_encoder,
train_text_encoder_frac,
text_encoder_learning_rate,
seed,
resolution,
num_train_epochs,
checkpointing_steps,
prior_loss_weight,
gradient_accumulation_steps,
gradient_checkpointing,
enable_xformers_memory_efficient_attention,
adam_beta1,
adam_beta2,
use_prodigy_beta3,
prodigy_beta3,
prodigy_decouple,
adam_weight_decay,
use_adam_weight_decay_text_encoder,
adam_weight_decay_text_encoder,
adam_epsilon,
prodigy_use_bias_correction,
prodigy_safeguard_warmup,
max_grad_norm,
scale_lr,
lr_num_cycles,
lr_scheduler,
lr_power,
lr_warmup_steps,
dataloader_num_workers,
local_rank,
dataset_folder,
token,
progress = gr.Progress(track_tqdm=True)
):
if not lora_name:
raise gr.Error("You forgot to insert your LoRA name! This name has to be unique.")
print("Started training")
slugged_lora_name = slugify(lora_name)
spacerunner_folder = str(uuid.uuid4())
commands = [
"pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-1.0",
"pretrained_vae_model_name_or_path=madebyollin/sdxl-vae-fp16-fix",
f"instance_prompt={concept_sentence}",
f"dataset_name=./{dataset_folder}",
"caption_column=prompt",
f"output_dir={slugged_lora_name}",
f"mixed_precision={mixed_precision}",
f"resolution={int(resolution)}",
f"train_batch_size={int(train_batch_size)}",
f"repeats={int(repeats)}",
f"gradient_accumulation_steps={int(gradient_accumulation_steps)}",
f"learning_rate={learning_rate}",
f"text_encoder_lr={text_encoder_learning_rate}",
f"adam_beta1={adam_beta1}",
f"adam_beta2={adam_beta2}",
f"optimizer={'adamW' if optimizer == '8bitadam' else optimizer}",
f"train_text_encoder_ti_frac={train_text_encoder_ti_frac}",
f"lr_scheduler={lr_scheduler}",
f"lr_warmup_steps={int(lr_warmup_steps)}",
f"rank={int(lora_rank)}",
f"max_train_steps={int(max_train_steps)}",
f"checkpointing_steps={int(checkpointing_steps)}",
f"seed={int(seed)}",
f"prior_loss_weight={prior_loss_weight}",
f"num_new_tokens_per_abstraction={int(num_new_tokens_per_abstraction)}",
f"num_train_epochs={int(num_train_epochs)}",
f"adam_weight_decay={adam_weight_decay}",
f"adam_epsilon={adam_epsilon}",
f"prodigy_decouple={prodigy_decouple}",
f"prodigy_use_bias_correction={prodigy_use_bias_correction}",
f"prodigy_safeguard_warmup={prodigy_safeguard_warmup}",
f"max_grad_norm={max_grad_norm}",
f"lr_num_cycles={int(lr_num_cycles)}",
f"lr_power={lr_power}",
f"dataloader_num_workers={int(dataloader_num_workers)}",
f"local_rank={int(local_rank)}",
"cache_latents",
#"push_to_hub",
]
# Adding optional flags
if optimizer == "8bitadam":
commands.append("use_8bit_adam")
if gradient_checkpointing:
commands.append("gradient_checkpointing")
if train_text_encoder_ti:
commands.append("train_text_encoder_ti")
elif train_text_encoder:
commands.append("train_text_encoder")
commands.append(f"train_text_encoder_frac={train_text_encoder_frac}")
if enable_xformers_memory_efficient_attention:
commands.append("enable_xformers_memory_efficient_attention")
if use_snr_gamma:
commands.append(f"snr_gamma={snr_gamma}")
if scale_lr:
commands.append("scale_lr")
if with_prior_preservation:
commands.append("with_prior_preservation")
commands.append(f"class_prompt={class_prompt}")
commands.append(f"num_class_images={int(num_class_images)}")
if class_images:
class_folder = str(uuid.uuid4())
zip_path = os.path.join(spacerunner_folder, class_folder, "class_images.zip")
if not os.path.exists(os.path.join(spacerunner_folder, class_folder)):
os.makedirs(os.path.join(spacerunner_folder, class_folder))
with zipfile.ZipFile(zip_path, 'w') as zipf:
for image in class_images:
zipf.write(image, os.path.basename(image))
commands.append(f"class_data_dir={class_folder}")
if use_prodigy_beta3:
commands.append(f"prodigy_beta3={prodigy_beta3}")
if use_adam_weight_decay_text_encoder:
commands.append(f"adam_weight_decay_text_encoder={adam_weight_decay_text_encoder}")
print(commands)
# Joining the commands with ';' separator for spacerunner format
spacerunner_args = ';'.join(commands)
if not os.path.exists(spacerunner_folder):
os.makedirs(spacerunner_folder)
shutil.copy("train_dreambooth_lora_sdxl_advanced.py", f"{spacerunner_folder}/trainer.py")
shutil.copy("script.py", f"{spacerunner_folder}/script.py")
shutil.copytree(dataset_folder, f"{spacerunner_folder}/{dataset_folder}")
requirements='''peft==0.7.1
-huggingface_hub
torch
git+https://github.com/huggingface/diffusers@518171600d3eb82fc4f4c84b81dd7564b02728dc
transformers==4.36.2
accelerate==0.25.0
safetensors==0.4.1
prodigyopt==1.0
hf-transfer==0.1.4
git+https://github.com/huggingface/datasets.git@3f149204a2a5948287adcade5e90707aa5207a92
git+https://github.com/huggingface/huggingface_hub.git@8d052492fe0059c606c1a48d7a914b15b64a834d'''
file_path = f'{spacerunner_folder}/requirements.txt'
with open(file_path, 'w') as file:
file.write(requirements)
# The subprocess call for autotrain spacerunner
api = HfApi(token=token)
username = api.whoami()["name"]
subprocess_command = ["autotrain", "spacerunner", "--project-name", slugged_lora_name, "--script-path", spacerunner_folder, "--username", username, "--token", token, "--backend", "spaces-a10gs", "--env",f"HF_TOKEN={token};HF_HUB_ENABLE_HF_TRANSFER=1", "--args", spacerunner_args]
outcome = subprocess.run(subprocess_command)
if(outcome.returncode == 0):
return f"""# Your training has started.
## - Training Status: <a href='https://huggingface.co/spaces/{username}/autotrain-{slugged_lora_name}?logs=container'>{username}/autotrain-{slugged_lora_name}</a> <small>(in the logs tab)</small>
## - Model page: <a href='https://huggingface.co/{username}/{slugged_lora_name}'>{username}/{slugged_lora_name}</a> <small>(will be available when training finishes)</small>"""
else:
raise gr.Error("Something went wrong. Make sure the name of your LoRA is unique and try again")
def calculate_price(iterations, with_prior_preservation):
if(with_prior_preservation):
seconds_per_iteration = 3.50
else:
seconds_per_iteration = 2.00
total_seconds = (iterations * seconds_per_iteration) + 210
cost_per_second = 1.05/60/60
cost = round(cost_per_second * total_seconds, 2)
return f'''To train this LoRA, we will duplicate the space and hook an A10G GPU under the hood.
## Estimated to cost <b>< US$ {str(cost)}</b> for {round(int(total_seconds)/60, 2)} minutes with your current train settings <small>({int(iterations)} iterations at {seconds_per_iteration}s/it)</small>
#### ↓ to continue, grab you <b>write</b> token [here](https://huggingface.co/settings/tokens) and enter it below ↓'''
def start_training_og(
lora_name,
training_option,
concept_sentence,
optimizer,
use_snr_gamma,
snr_gamma,
mixed_precision,
learning_rate,
train_batch_size,
max_train_steps,
lora_rank,
repeats,
with_prior_preservation,
class_prompt,
class_images,
num_class_images,
train_text_encoder_ti,
train_text_encoder_ti_frac,
num_new_tokens_per_abstraction,
train_text_encoder,
train_text_encoder_frac,
text_encoder_learning_rate,
seed,
resolution,
num_train_epochs,
checkpointing_steps,
prior_loss_weight,
gradient_accumulation_steps,
gradient_checkpointing,
enable_xformers_memory_efficient_attention,
adam_beta1,
adam_beta2,
prodigy_beta3,
prodigy_decouple,
adam_weight_decay,
adam_weight_decay_text_encoder,
adam_epsilon,
prodigy_use_bias_correction,
prodigy_safeguard_warmup,
max_grad_norm,
scale_lr,
lr_num_cycles,
lr_scheduler,
lr_power,
lr_warmup_steps,
dataloader_num_workers,
local_rank,
dataset_folder,
progress = gr.Progress(track_tqdm=True)
):
slugged_lora_name = slugify(lora_name)
commands = ["--pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-1.0",
"--pretrained_vae_model_name_or_path=madebyollin/sdxl-vae-fp16-fix",
f"--instance_prompt={concept_sentence}",
f"--dataset_name=./{dataset_folder}",
"--caption_column=prompt",
f"--output_dir={slugged_lora_name}",
f"--mixed_precision={mixed_precision}",
f"--resolution={int(resolution)}",
f"--train_batch_size={int(train_batch_size)}",
f"--repeats={int(repeats)}",
f"--gradient_accumulation_steps={int(gradient_accumulation_steps)}",
f"--learning_rate={learning_rate}",
f"--text_encoder_lr={text_encoder_learning_rate}",
f"--adam_beta1={adam_beta1}",
f"--adam_beta2={adam_beta2}",
f"--optimizer={'adamW' if optimizer == '8bitadam' else optimizer}",
f"--train_text_encoder_ti_frac={train_text_encoder_ti_frac}",
f"--lr_scheduler={lr_scheduler}",
f"--lr_warmup_steps={int(lr_warmup_steps)}",
f"--rank={int(lora_rank)}",
f"--max_train_steps={int(max_train_steps)}",
f"--checkpointing_steps={int(checkpointing_steps)}",
f"--seed={int(seed)}",
f"--prior_loss_weight={prior_loss_weight}",
f"--num_new_tokens_per_abstraction={int(num_new_tokens_per_abstraction)}",
f"--num_train_epochs={int(num_train_epochs)}",
f"--prodigy_beta3={prodigy_beta3}",
f"--adam_weight_decay={adam_weight_decay}",
f"--adam_weight_decay_text_encoder={adam_weight_decay_text_encoder}",
f"--adam_epsilon={adam_epsilon}",
f"--prodigy_decouple={prodigy_decouple}",
f"--prodigy_use_bias_correction={prodigy_use_bias_correction}",
f"--prodigy_safeguard_warmup={prodigy_safeguard_warmup}",
f"--max_grad_norm={max_grad_norm}",
f"--lr_num_cycles={int(lr_num_cycles)}",
f"--lr_power={lr_power}",
f"--dataloader_num_workers={int(dataloader_num_workers)}",
f"--local_rank={int(local_rank)}",
"--cache_latents"
]
if optimizer == "8bitadam":
commands.append("--use_8bit_adam")
if gradient_checkpointing:
commands.append("--gradient_checkpointing")
if train_text_encoder_ti:
commands.append("--train_text_encoder_ti")
elif train_text_encoder:
commands.append("--train_text_encoder")
commands.append(f"--train_text_encoder_frac={train_text_encoder_frac}")
if enable_xformers_memory_efficient_attention:
commands.append("--enable_xformers_memory_efficient_attention")
if use_snr_gamma:
commands.append(f"--snr_gamma={snr_gamma}")
if scale_lr:
commands.append("--scale_lr")
if with_prior_preservation:
commands.append(f"--with_prior_preservation")
commands.append(f"--class_prompt={class_prompt}")
commands.append(f"--num_class_images={int(num_class_images)}")
if(class_images):
class_folder = str(uuid.uuid4())
if not os.path.exists(class_folder):
os.makedirs(class_folder)
for image in class_images:
shutil.copy(image, class_folder)
commands.append(f"--class_data_dir={class_folder}")
from train_dreambooth_lora_sdxl_advanced import main as train_main, parse_args as parse_train_args
args = parse_train_args(commands)
train_main(args)
return "ok!"
@spaces.GPU()
def run_captioning(*inputs):
model.to("cuda")
images = inputs[0]
training_option = inputs[-1]
final_captions = [""] * MAX_IMAGES
for index, image in enumerate(images):
original_caption = inputs[index + 1]
pil_image = Image.open(image)
blip_inputs = processor(images=pil_image, return_tensors="pt").to(device, torch.float16)
generated_ids = model.generate(**blip_inputs)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
if training_option == "style":
final_caption = generated_text + " " + original_caption
else:
final_caption = original_caption + " " + generated_text
final_captions[index] = final_caption
yield final_captions
def check_token(token):
try:
api = HfApi(token=token)
user_data = api.whoami()
except Exception as e:
gr.Warning("Invalid user token. Make sure to get your Hugging Face token from the settings page")
return gr.update(visible=False), gr.update(visible=False)
else:
if (user_data['auth']['accessToken']['role'] != "write"):
gr.Warning("Ops, you've uploaded a Read token. You need to use a Write token!")
else:
if user_data['canPay']:
return gr.update(visible=False), gr.update(visible=True)
else:
return gr.update(visible=True), gr.update(visible=False)
return gr.update(visible=False), gr.update(visible=False)
def check_if_tok(sentence, textual_inversion):
if "TOK" not in sentence and textual_inversion:
gr.Warning("⚠️ You've removed the special token TOK from your concept sentence. This will degrade performance as this special token is needed for textual inversion. Use TOK to describe what you are training.")
css = '''.gr-group{background-color: transparent;box-shadow: var(--block-shadow)}
.gr-group .hide-container{padding: 1em; background: var(--block-background-fill) !important}
.gr-group img{object-fit: cover}
#main_title{text-align:center}
#main_title h1 {font-size: 2.25rem}
#main_title h3, #main_title p{margin-top: 0;font-size: 1.25em}
#training_cost h2{margin-top: 10px;padding: 0.5em;border: 1px solid var(--block-border-color);font-size: 1.25em}
#training_cost h4{margin-top: 1.25em;margin-bottom: 0}
#training_cost small{font-weight: normal}
.accordion {color: var(--body-text-color)}
.main_unlogged{opacity: 0.5;pointer-events: none}
.login_logout{width: 100% !important}
#login {font-size: 0px;width: 100% !important;margin: 0 auto}
#login:after {content: 'Authorize this app to train your model';visibility: visible;display: block;font-size: var(--button-large-text-size)}
'''
theme = gr.themes.Monochrome(
text_size=gr.themes.Size(lg="18px", md="15px", sm="13px", xl="22px", xs="12px", xxl="24px", xxs="9px"),
font=[gr.themes.GoogleFont('Source Sans Pro'), 'ui-sans-serif', 'system-ui', 'sans-serif'],
)
#def swap_opacity(token: gr.OAuthToken | None):
# if token is None:
# return gr.update(elem_classes=["main_unlogged"], elem_id="login")
# else:
# return gr.update(elem_classes=["main_logged"])
with gr.Blocks(css=css, theme=theme) as demo:
dataset_folder = gr.State()
gr.Markdown('''# LoRA Ease 🧞♂️
### Train a high quality SDXL LoRA in a breeze ༄ with state-of-the-art techniques
<small>Dreambooth with Pivotal Tuning, Prodigy and more! Use the trained LoRAs with diffusers, AUTO1111, Comfy. [blog about the training script](#), [Colab Pro](#), [run locally or in a cloud](#)</small>''', elem_id="main_title")
#gr.LoginButton(elem_classes=["login_logout"])
with gr.Column(elem_classes=["main_logged"]) as main_ui:
lora_name = gr.Textbox(label="The name of your LoRA", info="This has to be a unique name", placeholder="e.g.: Persian Miniature Painting style, Cat Toy")
training_option = gr.Radio(
label="What are you training?", choices=["object", "style", "character", "face", "custom"]
)
concept_sentence = gr.Textbox(
label="Concept sentence",
info="Sentence to be used in all images for captioning. TOK is a special mandatory token, used to teach the model your concept.",
placeholder="e.g.: A photo of TOK, in the style of TOK",
visible=False,
interactive=True,
)
with gr.Group(visible=False) as image_upload:
with gr.Row():
images = gr.File(
file_types=["image"],
label="Upload your images",
file_count="multiple",
interactive=True,
visible=True,
scale=1,
)
with gr.Column(scale=3, visible=False) as captioning_area:
with gr.Column():
gr.Markdown(
"""# Custom captioning
To improve the quality of your outputs, you can add a custom caption for each image, describing exactly what is taking place in each of them. Including TOK is mandatory. You can leave things as is if you don't want to include captioning.
"""
)
do_captioning = gr.Button("Add AI captions with BLIP-2")
output_components = [captioning_area]
caption_list = []
for i in range(1, MAX_IMAGES + 1):
locals()[f"captioning_row_{i}"] = gr.Row(visible=False)
with locals()[f"captioning_row_{i}"]:
locals()[f"image_{i}"] = gr.Image(
width=111,
height=111,
min_width=111,
interactive=False,
scale=2,
show_label=False,
show_share_button=False,
show_download_button=False
)
locals()[f"caption_{i}"] = gr.Textbox(
label=f"Caption {i}", scale=15, interactive=True
)
output_components.append(locals()[f"captioning_row_{i}"])
output_components.append(locals()[f"image_{i}"])
output_components.append(locals()[f"caption_{i}"])
caption_list.append(locals()[f"caption_{i}"])
with gr.Accordion(open=False, label="Advanced options", visible=False, elem_classes=['accordion']) as advanced:
with gr.Row():
with gr.Column():
optimizer = gr.Dropdown(
label="Optimizer",
info="Prodigy is an auto-optimizer and works good by default. If you prefer to set your own learning rates, change it to AdamW. If you don't have enough VRAM to train with AdamW, pick 8-bit Adam.",
choices=[
("Prodigy", "prodigy"),
("AdamW", "adamW"),
("8-bit Adam", "8bitadam"),
],
value="prodigy",
interactive=True,
)
use_snr_gamma = gr.Checkbox(label="Use SNR Gamma")
snr_gamma = gr.Number(
label="snr_gamma",
info="SNR weighting gamma to re-balance the loss",
value=5.000,
step=0.1,
visible=False,
)
mixed_precision = gr.Dropdown(
label="Mixed Precision",
choices=["no", "fp16", "bf16"],
value="bf16",
)
learning_rate = gr.Number(
label="UNet Learning rate",
minimum=0.0,
maximum=10.0,
step=0.0000001,
value=1.0, # For prodigy you start high and it will optimize down
)
max_train_steps = gr.Number(
label="Max train steps", minimum=1, maximum=50000, value=1000
)
lora_rank = gr.Number(
label="LoRA Rank",
info="Rank for the Low Rank Adaptation (LoRA), a higher rank produces a larger LoRA",
value=8,
step=2,
minimum=2,
maximum=1024,
)
repeats = gr.Number(
label="Repeats",
info="How many times to repeat the training data.",
value=1,
minimum=1,
maximum=200,
)
with gr.Column():
with_prior_preservation = gr.Checkbox(
label="Prior preservation loss",
info="Prior preservation helps to ground the model to things that are similar to your concept. Good for faces.",
value=False,
)
with gr.Column(visible=False) as prior_preservation_params:
with gr.Tab("prompt"):
class_prompt = gr.Textbox(
label="Class Prompt",
info="The prompt that will be used to generate your class images",
)
with gr.Tab("images"):
class_images = gr.File(
file_types=["image"],
label="Upload your images",
file_count="multiple",
)
num_class_images = gr.Number(
label="Number of class images, if there are less images uploaded then the number you put here, additional images will be sampled with Class Prompt",
value=20,
)
train_text_encoder_ti = gr.Checkbox(
label="Do textual inversion",
value=True,
info="Will train a textual inversion embedding together with the LoRA. Increases quality significantly. If untoggled, you can remove the special TOK token from the prompts.",
)
with gr.Group(visible=True) as pivotal_tuning_params:
train_text_encoder_ti_frac = gr.Number(
label="Pivot Textual Inversion",
info="% of epochs to train textual inversion for",
value=0.5,
step=0.1,
)
num_new_tokens_per_abstraction = gr.Number(
label="Tokens to train",
info="Number of tokens to train in the textual inversion",
value=2,
minimum=1,
maximum=1024,
interactive=True,
)
with gr.Group(visible=False) as text_encoder_train_params:
train_text_encoder = gr.Checkbox(
label="Train Text Encoder", value=True
)
train_text_encoder_frac = gr.Number(
label="Pivot Text Encoder",
info="% of epochs to train the text encoder for",
value=0.8,
step=0.1,
)
text_encoder_learning_rate = gr.Number(
label="Text encoder learning rate",
minimum=0.0,
maximum=10.0,
step=0.0000001,
value=1.0,
)
seed = gr.Number(label="Seed", value=42)
resolution = gr.Number(
label="Resolution",
info="Only square sizes are supported for now, the value will be width and height",
value=1024,
)
with gr.Accordion(open=False, label="Even more advanced options", elem_classes=['accordion']):
with gr.Row():
with gr.Column():
gradient_accumulation_steps = gr.Number(
info="If you change this setting, the pricing calculation will be wrong",
label="gradient_accumulation_steps",
value=1
)
train_batch_size = gr.Number(
info="If you change this setting, the pricing calculation will be wrong",
label="Train batch size",
value=2
)
num_train_epochs = gr.Number(
info="If you change this setting, the pricing calculation will be wrong",
label="num_train_epochs",
value=1
)
checkpointing_steps = gr.Number(
info="How many steps to save intermediate checkpoints",
label="checkpointing_steps",
value=5000
)
prior_loss_weight = gr.Number(
label="prior_loss_weight",
value=1
)
gradient_checkpointing = gr.Checkbox(
label="gradient_checkpointing",
info="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass",
value=True,
)
adam_beta1 = gr.Number(
label="adam_beta1",
value=0.9,
minimum=0,
maximum=1,
step=0.01
)
adam_beta2 = gr.Number(
label="adam_beta2",
minimum=0,
maximum=1,
step=0.01,
value=0.999
)
use_prodigy_beta3 = gr.Checkbox(
label="Use Prodigy Beta 3?"
)
prodigy_beta3 = gr.Number(
label="Prodigy Beta 3",
value=None,
step=0.01,
minimum=0,
maximum=1,
)
prodigy_decouple = gr.Checkbox(
label="Prodigy Decouple",
value=True
)
adam_weight_decay = gr.Number(
label="Adam Weight Decay",
value=1e-04,
step=0.00001,
minimum=0,
maximum=1,
)
use_adam_weight_decay_text_encoder = gr.Checkbox(
label="Use Adam Weight Decay Text Encoder"
)
adam_weight_decay_text_encoder = gr.Number(
label="Adam Weight Decay Text Encoder",
value=None,
step=0.00001,
minimum=0,
maximum=1,
)
adam_epsilon = gr.Number(
label="Adam Epsilon",
value=1e-08,
step=0.00000001,
minimum=0,
maximum=1,
)
prodigy_use_bias_correction = gr.Checkbox(
label="Prodigy Use Bias Correction",
value=True
)
prodigy_safeguard_warmup = gr.Checkbox(
label="Prodigy Safeguard Warmup",
value=True
)
max_grad_norm = gr.Number(
label="Max Grad Norm",
value=1.0,
minimum=0.1,
maximum=10,
step=0.1,
)
enable_xformers_memory_efficient_attention = gr.Checkbox(
label="enable_xformers_memory_efficient_attention"
)
with gr.Column():
scale_lr = gr.Checkbox(
label="Scale learning rate",
info="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size",
)
lr_num_cycles = gr.Number(
label="lr_num_cycles",
value=1
)
lr_scheduler = gr.Dropdown(
label="lr_scheduler",
choices=[
"linear",
"cosine",
"cosine_with_restarts",
"polynomial",
"constant",
"constant_with_warmup",
],
value="constant",
)
lr_power = gr.Number(
label="lr_power",
value=1.0,
minimum=0.1,
maximum=10
)
lr_warmup_steps = gr.Number(
label="lr_warmup_steps",
value=0
)
dataloader_num_workers = gr.Number(
label="Dataloader num workers", value=0, minimum=0, maximum=64
)
local_rank = gr.Number(
label="local_rank",
value=-1
)
with gr.Column(visible=False) as cost_estimation:
with gr.Group(elem_id="cost_box"):
training_cost_estimate = gr.Markdown(elem_id="training_cost")
token = gr.Textbox(label="Your Hugging Face write token", info="A Hugging Face write token you can obtain on the settings page", type="password", placeholder="hf_OhHiThIsIsNoTaReALToKeNGOoDTry")
with gr.Group(visible=False) as no_payment_method:
with gr.Row():
gr.HTML("<h3 style='margin: 0'>Your Hugging Face account doesn't have a payment method set up. Set one up <a href='https://huggingface.co/settings/billing/payment' target='_blank'>here</a> and come back here to train your LoRA</h3>")
payment_setup = gr.Button("I have set up a payment method")
start = gr.Button("Start training", visible=False, interactive=True)
progress_area = gr.Markdown("")
#gr.LogoutButton(elem_classes=["login_logout"])
output_components.insert(1, advanced)
output_components.insert(1, cost_estimation)
gr.on(
triggers=[
token.change,
payment_setup.click
],
fn=check_token,
inputs=token,
outputs=[no_payment_method, start],
concurrency_limit=50,
)
concept_sentence.change(
check_if_tok,
inputs=[concept_sentence, train_text_encoder_ti],
concurrency_limit=50,
)
use_snr_gamma.change(
lambda x: gr.update(visible=x),
inputs=use_snr_gamma,
outputs=snr_gamma,
queue=False,
)
with_prior_preservation.change(
lambda x: gr.update(visible=x),
inputs=with_prior_preservation,
outputs=prior_preservation_params,
queue=False,
)
train_text_encoder_ti.change(
lambda x: gr.update(visible=x),
inputs=train_text_encoder_ti,
outputs=pivotal_tuning_params,
queue=False,
).then(
lambda x: gr.update(visible=(not x)),
inputs=train_text_encoder_ti,
outputs=text_encoder_train_params,
queue=False,
).then(
lambda x: gr.Warning("As you have disabled Pivotal Tuning, you can remove TOK from your prompts and try to find a unique token for them") if not x else None,
inputs=train_text_encoder_ti,
concurrency_limit=50,
)
train_text_encoder.change(
lambda x: [gr.update(visible=x), gr.update(visible=x)],
inputs=train_text_encoder,
outputs=[train_text_encoder_frac, text_encoder_learning_rate],
queue=False,
)
class_images.change(
lambda x: gr.update(value=len(x)),
inputs=class_images,
outputs=num_class_images,
queue=False
)
images.upload(
load_captioning,
inputs=[images, concept_sentence],
outputs=output_components,
queue=False
).then(
change_defaults,
inputs=[training_option, images],
outputs=[max_train_steps, repeats, lr_scheduler, lora_rank, with_prior_preservation, class_prompt, class_images],
queue=False
)
images.change(
check_removed_and_restart,
inputs=[images],
outputs=[captioning_area, advanced, cost_estimation],
queue=False
)
training_option.change(
make_options_visible,
inputs=training_option,
outputs=[concept_sentence, image_upload],
queue=False
)
max_train_steps.change(
calculate_price,
inputs=[max_train_steps, with_prior_preservation],
outputs=[training_cost_estimate],
queue=False
)
start.click(
fn=create_dataset,
inputs=[images] + caption_list,
outputs=dataset_folder,
queue=False
).then(
fn=start_training,
inputs=[
lora_name,
training_option,
concept_sentence,
optimizer,
use_snr_gamma,
snr_gamma,
mixed_precision,
learning_rate,
train_batch_size,
max_train_steps,
lora_rank,
repeats,
with_prior_preservation,
class_prompt,
class_images,
num_class_images,
train_text_encoder_ti,
train_text_encoder_ti_frac,
num_new_tokens_per_abstraction,
train_text_encoder,
train_text_encoder_frac,
text_encoder_learning_rate,
seed,
resolution,
num_train_epochs,
checkpointing_steps,
prior_loss_weight,
gradient_accumulation_steps,
gradient_checkpointing,
enable_xformers_memory_efficient_attention,
adam_beta1,
adam_beta2,
use_prodigy_beta3,
prodigy_beta3,
prodigy_decouple,
adam_weight_decay,
use_adam_weight_decay_text_encoder,
adam_weight_decay_text_encoder,
adam_epsilon,
prodigy_use_bias_correction,
prodigy_safeguard_warmup,
max_grad_norm,
scale_lr,
lr_num_cycles,
lr_scheduler,
lr_power,
lr_warmup_steps,
dataloader_num_workers,
local_rank,
dataset_folder,
token
],
outputs = progress_area,
queue=False
)
do_captioning.click(
fn=run_captioning, inputs=[images] + caption_list + [training_option], outputs=caption_list
)
#demo.load(fn=swap_opacity, outputs=[main_ui], queue=False, concurrency_limit=50)
if __name__ == "__main__":
demo.queue()
demo.launch(share=True) |