File size: 43,943 Bytes
53c1e6e
 
 
 
 
3e27b3e
53c1e6e
 
 
 
 
 
 
 
 
 
4f58dd2
172c210
c10e71a
 
f13c68c
53c1e6e
17090f3
03b43e9
6630ef4
 
ff8f5cb
53c1e6e
 
0e3b560
4f58dd2
 
 
53c1e6e
 
 
 
a9aaca0
 
 
44ac339
a9aaca0
 
 
106ce34
a9aaca0
 
 
 
a24aec5
 
a9aaca0
 
1c5abdf
a9aaca0
44ac339
 
 
 
 
1bae5e6
44ac339
a9aaca0
44ac339
a9aaca0
 
 
44ac339
a9aaca0
 
 
 
 
 
 
 
 
 
 
 
 
 
c4ca285
a9aaca0
53c1e6e
 
 
7068031
f13c68c
 
 
53c1e6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0484b8c
53c1e6e
 
 
 
 
 
44ac339
 
53c1e6e
 
 
 
 
 
a9aaca0
53c1e6e
a9aaca0
53c1e6e
a9aaca0
 
 
 
 
 
 
 
 
53c1e6e
a9aaca0
 
 
 
53c1e6e
 
a9aaca0
 
53c1e6e
3e27b3e
53c1e6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11afe3b
53c1e6e
 
 
11afe3b
53c1e6e
 
 
 
 
 
 
 
 
 
 
 
 
3965ed9
fd92630
1b8bc30
34a9bf9
 
1b8bc30
53c1e6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e470146
 
 
53c1e6e
 
 
 
 
 
6630ef4
53c1e6e
 
 
 
 
 
 
 
 
 
 
11afe3b
53c1e6e
 
 
 
 
 
 
 
 
 
 
 
c10e71a
 
 
 
 
 
 
 
 
53c1e6e
11afe3b
 
 
 
ea1e5ba
53c1e6e
 
 
 
6630ef4
 
53c1e6e
867b96b
08be887
53c1e6e
5cbd9e7
1821e50
d3e8e32
1821e50
 
 
 
08be887
53c1e6e
 
 
 
 
 
ee56a96
34a9bf9
 
 
3284c98
 
34a9bf9
 
53c1e6e
42ce6d2
 
 
 
92cafd3
03b43e9
 
 
 
42ce6d2
d338a84
3965ed9
53c1e6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dcc0c1
53c1e6e
4dcc0c1
53c1e6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3965ed9
02a9af1
 
03b43e9
02a9af1
ac5ec86
 
fbb3ef2
3965ed9
 
fbb3ef2
02a9af1
 
 
 
 
 
fbb3ef2
b3b2261
 
7fa432c
b3b2261
46ec870
03b43e9
 
 
 
 
 
 
 
ebdec97
c968311
0978691
6313efa
 
03b43e9
 
a9aaca0
03b43e9
 
3965ed9
 
 
 
 
f27f206
03b43e9
53c1e6e
a6e8ae8
db9c00f
576bad0
3965ed9
 
1b8bc30
 
44ac339
1b8bc30
 
 
 
 
 
 
 
 
 
 
 
 
 
53c1e6e
1b8bc30
 
53c1e6e
1b8bc30
 
 
 
 
 
53c1e6e
1b8bc30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e59bd75
1b8bc30
 
 
 
 
 
 
53c1e6e
 
1b8bc30
 
 
 
 
 
 
 
 
 
53c1e6e
1b8bc30
 
 
 
 
 
 
53c1e6e
1b8bc30
 
 
 
53c1e6e
1b8bc30
 
 
 
 
 
53c1e6e
1b8bc30
 
53c1e6e
1b8bc30
 
 
 
 
 
 
53c1e6e
1b8bc30
 
 
 
 
 
03b43e9
53c1e6e
1b8bc30
 
 
 
03b43e9
1b8bc30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53c1e6e
1b8bc30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03b43e9
53c1e6e
1b8bc30
 
 
 
 
03b43e9
f4416a9
1b8bc30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11afe3b
 
 
1b8bc30
 
 
 
 
 
 
11afe3b
 
 
 
1b8bc30
 
 
 
 
 
 
11afe3b
 
 
1b8bc30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3965ed9
1b8bc30
 
 
 
 
 
 
f4416a9
3965ed9
53c1e6e
054782c
fbb3ef2
 
3965ed9
fbb3ef2
 
 
3965ed9
03b43e9
f6521a5
fbb3ef2
b3b2261
 
 
f6521a5
b3b2261
53c1e6e
 
 
 
f6521a5
53c1e6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6521a5
 
 
 
53c1e6e
 
 
 
 
 
 
 
 
 
 
 
 
 
03b43e9
 
 
 
53c1e6e
 
 
03b43e9
 
53c1e6e
 
 
 
0484b8c
03b43e9
53c1e6e
 
 
 
 
03b43e9
 
 
 
42ce6d2
03b43e9
 
53c1e6e
 
 
 
03b43e9
 
53c1e6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11afe3b
53c1e6e
 
 
11afe3b
53c1e6e
 
 
 
 
 
 
 
 
 
 
 
 
3965ed9
53c1e6e
03b43e9
 
53c1e6e
 
 
 
 
3965ed9
53c1e6e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
import gradio as gr
from PIL import Image
import requests
import subprocess
from transformers import Blip2Processor, Blip2ForConditionalGeneration
from huggingface_hub import snapshot_download, HfApi
import torch
import uuid
import os
import shutil
import json
import random
from slugify import slugify
import argparse 
import importlib
import sys
from pathlib import Path
import spaces
import zipfile

MAX_IMAGES = 100

training_script_url = "https://raw.githubusercontent.com/huggingface/diffusers/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py"
subprocess.run(['wget', '-N', training_script_url])
orchestrator_script_url = "https://huggingface.co/datasets/multimodalart/lora-ease-helper/raw/main/script.py"
subprocess.run(['wget', '-N', orchestrator_script_url])

device = "cuda" if torch.cuda.is_available() else "cpu"

FACES_DATASET_PATH = snapshot_download(repo_id="multimodalart/faces-prior-preservation", repo_type="dataset")
#Delete .gitattributes to process things properly
Path(FACES_DATASET_PATH, '.gitattributes').unlink(missing_ok=True)

processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2ForConditionalGeneration.from_pretrained(
    "Salesforce/blip2-opt-2.7b", device_map={"": 0}, torch_dtype=torch.float16
)

training_option_settings = {
    "face": {
        "rank": 32,
        "lr_scheduler": "constant",
        "with_prior_preservation": True,
        "class_prompt": "a photo of a person",
        "train_steps_multiplier": 75,
        "file_count": 150,
        "dataset_path": FACES_DATASET_PATH
    },
    "style": {
        "rank": 32,
        "lr_scheduler": "constant",
        "with_prior_preservation": False,
        "class_prompt": "",
        "train_steps_multiplier": 75
    },
    "character": {
        "rank": 32,
        "lr_scheduler": "constant",
        "with_prior_preservation": False,
        "class_prompt": "",
        "train_steps_multiplier": 180
    },
    "object": {
        "rank": 16,
        "lr_scheduler": "constant",
        "with_prior_preservation": False,
        "class_prompt": "",
        "train_steps_multiplier": 50
    },
    "custom": {  
        "rank": 32,
        "lr_scheduler": "constant",
        "with_prior_preservation": False,
        "class_prompt": "",
        "train_steps_multiplier": 150
    }
}

num_images_settings = { 
    #>24 images, 1 repeat; 10<x<24 images 2 repeats; <10 images 3 repeats
    "repeats": [(24, 1), (10, 2), (0, 3)],
    "train_steps_min": 500,
    "train_steps_max": 1500
}

def load_captioning(uploaded_images, option):
    updates = []
    if len(uploaded_images) <= 1:
        raise gr.Error(
            "Error: please upload at least 2 images to train your model (the ideal number with default settings is between 4-30)"
        )
    if len(uploaded_images) > MAX_IMAGES:
        raise gr.Error(
            f"Error: for now, only {MAX_IMAGES} or less images are allowed for training"
        )
    # Update for the captioning_area
    for _ in range(3):
        updates.append(gr.update(visible=True))
    # Update visibility and image for each captioning row and image
    for i in range(1, MAX_IMAGES + 1):
        # Determine if the current row and image should be visible
        visible = i <= len(uploaded_images)

        # Update visibility of the captioning row
        updates.append(gr.update(visible=visible))

        # Update for image component - display image if available, otherwise hide
        image_value = uploaded_images[i - 1] if visible else None
        updates.append(gr.update(value=image_value, visible=visible))

        text_value = option if visible else None
        updates.append(gr.update(value=text_value, visible=visible))
    return updates

def check_removed_and_restart(images):
    visible = bool(images)
    return [gr.update(visible=visible) for _ in range(3)]

def make_options_visible(option):
    if (option == "object") or (option == "face"):
        sentence = "A photo of TOK"
    elif option == "style":
        sentence = "in the style of TOK"
    elif option == "character":
        sentence = "A TOK character"
    elif option == "custom":
        sentence = "TOK"
    return (
        gr.update(value=sentence, visible=True),
        gr.update(visible=True),
    )
    
def change_defaults(option, images):
    settings = training_option_settings.get(option, training_option_settings["custom"])
    num_images = len(images)

    # Calculate max_train_steps
    train_steps_multiplier = settings["train_steps_multiplier"]
    max_train_steps = max(num_images * train_steps_multiplier, num_images_settings["train_steps_min"])
    max_train_steps = min(max_train_steps, num_images_settings["train_steps_max"])

    # Determine repeats based on number of images
    repeats = next(repeats for num, repeats in num_images_settings["repeats"] if num_images > num)

    random_files = []
    if settings["with_prior_preservation"]:
        directory = settings["dataset_path"]
        file_count = settings["file_count"]
        files = [os.path.join(directory, file) for file in os.listdir(directory) if os.path.isfile(os.path.join(directory, file))]
        random_files = random.sample(files, min(len(files), file_count))

    return max_train_steps, repeats, settings["lr_scheduler"], settings["rank"], settings["with_prior_preservation"], settings["class_prompt"], random_files
    
def create_dataset(*inputs):
    print("Creating dataset")
    images = inputs[0]
    destination_folder = str(uuid.uuid4())
    if not os.path.exists(destination_folder):
        os.makedirs(destination_folder)

    jsonl_file_path = os.path.join(destination_folder, 'metadata.jsonl')
    with open(jsonl_file_path, 'a') as jsonl_file:
        for index, image in enumerate(images):
            new_image_path = shutil.copy(image, destination_folder)
            
            original_caption = inputs[index + 1]
            file_name = os.path.basename(new_image_path)

            data = {"file_name": file_name, "prompt": original_caption}

            jsonl_file.write(json.dumps(data) + "\n")
    
    return destination_folder

def start_training(
    lora_name,
    training_option,
    concept_sentence,
    optimizer,
    use_snr_gamma,
    snr_gamma,
    mixed_precision,
    learning_rate,
    train_batch_size,
    max_train_steps,
    lora_rank,
    repeats,
    with_prior_preservation,
    class_prompt,
    class_images,
    num_class_images,
    train_text_encoder_ti,
    train_text_encoder_ti_frac,
    num_new_tokens_per_abstraction,
    train_text_encoder,
    train_text_encoder_frac,
    text_encoder_learning_rate,
    seed,
    resolution,
    num_train_epochs,
    checkpointing_steps,
    prior_loss_weight,
    gradient_accumulation_steps,
    gradient_checkpointing,
    enable_xformers_memory_efficient_attention,
    adam_beta1,
    adam_beta2,
    use_prodigy_beta3,
    prodigy_beta3,
    prodigy_decouple,
    adam_weight_decay,
    use_adam_weight_decay_text_encoder,
    adam_weight_decay_text_encoder,
    adam_epsilon,
    prodigy_use_bias_correction,
    prodigy_safeguard_warmup,
    max_grad_norm,
    scale_lr,
    lr_num_cycles,
    lr_scheduler,
    lr_power,
    lr_warmup_steps,
    dataloader_num_workers,
    local_rank,
    dataset_folder,
    token,
    progress = gr.Progress(track_tqdm=True)
):
    if not lora_name:
        raise gr.Error("You forgot to insert your LoRA name! This name has to be unique.")
    print("Started training")
    slugged_lora_name = slugify(lora_name)
    spacerunner_folder = str(uuid.uuid4())
    commands = [
        "pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-1.0",
        "pretrained_vae_model_name_or_path=madebyollin/sdxl-vae-fp16-fix",
        f"instance_prompt={concept_sentence}",
        f"dataset_name=./{dataset_folder}",
        "caption_column=prompt",
        f"output_dir={slugged_lora_name}",
        f"mixed_precision={mixed_precision}",
        f"resolution={int(resolution)}",
        f"train_batch_size={int(train_batch_size)}",
        f"repeats={int(repeats)}",
        f"gradient_accumulation_steps={int(gradient_accumulation_steps)}",
        f"learning_rate={learning_rate}",
        f"text_encoder_lr={text_encoder_learning_rate}",
        f"adam_beta1={adam_beta1}",
        f"adam_beta2={adam_beta2}",
        f"optimizer={'adamW' if optimizer == '8bitadam' else optimizer}",
        f"train_text_encoder_ti_frac={train_text_encoder_ti_frac}",
        f"lr_scheduler={lr_scheduler}",
        f"lr_warmup_steps={int(lr_warmup_steps)}",
        f"rank={int(lora_rank)}",
        f"max_train_steps={int(max_train_steps)}",
        f"checkpointing_steps={int(checkpointing_steps)}",
        f"seed={int(seed)}",
        f"prior_loss_weight={prior_loss_weight}",
        f"num_new_tokens_per_abstraction={int(num_new_tokens_per_abstraction)}",
        f"num_train_epochs={int(num_train_epochs)}",
        f"adam_weight_decay={adam_weight_decay}",
        f"adam_epsilon={adam_epsilon}",
        f"prodigy_decouple={prodigy_decouple}",
        f"prodigy_use_bias_correction={prodigy_use_bias_correction}",
        f"prodigy_safeguard_warmup={prodigy_safeguard_warmup}",
        f"max_grad_norm={max_grad_norm}",
        f"lr_num_cycles={int(lr_num_cycles)}",
        f"lr_power={lr_power}",
        f"dataloader_num_workers={int(dataloader_num_workers)}",
        f"local_rank={int(local_rank)}",
        "cache_latents",
        #"push_to_hub",
    ]
    # Adding optional flags
    if optimizer == "8bitadam":
        commands.append("use_8bit_adam")
    if gradient_checkpointing:
        commands.append("gradient_checkpointing")
    
    if train_text_encoder_ti:
        commands.append("train_text_encoder_ti")
    elif train_text_encoder:
        commands.append("train_text_encoder")
        commands.append(f"train_text_encoder_frac={train_text_encoder_frac}")
    if enable_xformers_memory_efficient_attention: 
        commands.append("enable_xformers_memory_efficient_attention")
    if use_snr_gamma: 
        commands.append(f"snr_gamma={snr_gamma}")
    if scale_lr:
        commands.append("scale_lr")
    if with_prior_preservation:
        commands.append("with_prior_preservation")
        commands.append(f"class_prompt={class_prompt}")
        commands.append(f"num_class_images={int(num_class_images)}")
        if class_images:
            class_folder = str(uuid.uuid4())
            zip_path = os.path.join(spacerunner_folder, class_folder, "class_images.zip")
        
            if not os.path.exists(os.path.join(spacerunner_folder, class_folder)):
                os.makedirs(os.path.join(spacerunner_folder, class_folder))
        
            with zipfile.ZipFile(zip_path, 'w') as zipf:
                for image in class_images:
                    zipf.write(image, os.path.basename(image))
            
            commands.append(f"class_data_dir={class_folder}")
    if use_prodigy_beta3:
        commands.append(f"prodigy_beta3={prodigy_beta3}")
    if use_adam_weight_decay_text_encoder:
        commands.append(f"adam_weight_decay_text_encoder={adam_weight_decay_text_encoder}")
    print(commands)
    # Joining the commands with ';' separator for spacerunner format
    spacerunner_args = ';'.join(commands)
    if not os.path.exists(spacerunner_folder):
        os.makedirs(spacerunner_folder)
    shutil.copy("train_dreambooth_lora_sdxl_advanced.py", f"{spacerunner_folder}/trainer.py")
    shutil.copy("script.py", f"{spacerunner_folder}/script.py")
    shutil.copytree(dataset_folder, f"{spacerunner_folder}/{dataset_folder}")
    requirements='''peft==0.7.1
-huggingface_hub
torch
git+https://github.com/huggingface/diffusers@518171600d3eb82fc4f4c84b81dd7564b02728dc
transformers==4.36.2
accelerate==0.25.0
safetensors==0.4.1
prodigyopt==1.0
hf-transfer==0.1.4
git+https://github.com/huggingface/datasets.git@3f149204a2a5948287adcade5e90707aa5207a92
git+https://github.com/huggingface/huggingface_hub.git@8d052492fe0059c606c1a48d7a914b15b64a834d'''
    file_path = f'{spacerunner_folder}/requirements.txt'
    with open(file_path, 'w') as file:
        file.write(requirements)
    # The subprocess call for autotrain spacerunner
    api = HfApi(token=token)
    username = api.whoami()["name"]
    subprocess_command = ["autotrain", "spacerunner", "--project-name", slugged_lora_name, "--script-path", spacerunner_folder, "--username", username, "--token", token, "--backend", "spaces-a10gs", "--env",f"HF_TOKEN={token};HF_HUB_ENABLE_HF_TRANSFER=1", "--args", spacerunner_args]
    outcome = subprocess.run(subprocess_command)
    if(outcome.returncode == 0):
        return f"""# Your training has started. 
## - Training Status: <a href='https://huggingface.co/spaces/{username}/autotrain-{slugged_lora_name}?logs=container'>{username}/autotrain-{slugged_lora_name}</a> <small>(in the logs tab)</small>
## - Model page: <a href='https://huggingface.co/{username}/{slugged_lora_name}'>{username}/{slugged_lora_name}</a> <small>(will be available when training finishes)</small>"""
    else:
        raise gr.Error("Something went wrong. Make sure the name of your LoRA is unique and try again")

def calculate_price(iterations, with_prior_preservation):
    if(with_prior_preservation):
        seconds_per_iteration = 3.50
    else:
        seconds_per_iteration = 2.00
    total_seconds = (iterations * seconds_per_iteration) + 210
    cost_per_second = 1.05/60/60
    cost = round(cost_per_second * total_seconds, 2)
    return f'''To train this LoRA, we will duplicate the space and hook an A10G GPU under the hood.
## Estimated to cost <b>< US$ {str(cost)}</b> for {round(int(total_seconds)/60, 2)} minutes with your current train settings <small>({int(iterations)} iterations at {seconds_per_iteration}s/it)</small>
#### ↓ to continue, grab you <b>write</b> token [here](https://huggingface.co/settings/tokens) and enter it below ↓'''

def start_training_og(
    lora_name,
    training_option,
    concept_sentence,
    optimizer,
    use_snr_gamma,
    snr_gamma,
    mixed_precision,
    learning_rate,
    train_batch_size,
    max_train_steps,
    lora_rank,
    repeats,
    with_prior_preservation,
    class_prompt,
    class_images,
    num_class_images,
    train_text_encoder_ti,
    train_text_encoder_ti_frac,
    num_new_tokens_per_abstraction,
    train_text_encoder,
    train_text_encoder_frac,
    text_encoder_learning_rate,
    seed,
    resolution,
    num_train_epochs,
    checkpointing_steps,
    prior_loss_weight,
    gradient_accumulation_steps,
    gradient_checkpointing,
    enable_xformers_memory_efficient_attention,
    adam_beta1,
    adam_beta2,
    prodigy_beta3,
    prodigy_decouple,
    adam_weight_decay,
    adam_weight_decay_text_encoder,
    adam_epsilon,
    prodigy_use_bias_correction,
    prodigy_safeguard_warmup,
    max_grad_norm,
    scale_lr,
    lr_num_cycles,
    lr_scheduler,
    lr_power,
    lr_warmup_steps,
    dataloader_num_workers,
    local_rank,
    dataset_folder,
    progress = gr.Progress(track_tqdm=True)
):
    slugged_lora_name = slugify(lora_name)
    commands = ["--pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-1.0",
            "--pretrained_vae_model_name_or_path=madebyollin/sdxl-vae-fp16-fix",
            f"--instance_prompt={concept_sentence}",
            f"--dataset_name=./{dataset_folder}",
            "--caption_column=prompt",
            f"--output_dir={slugged_lora_name}",
            f"--mixed_precision={mixed_precision}",
            f"--resolution={int(resolution)}",
            f"--train_batch_size={int(train_batch_size)}",
            f"--repeats={int(repeats)}",
            f"--gradient_accumulation_steps={int(gradient_accumulation_steps)}",
            f"--learning_rate={learning_rate}",
            f"--text_encoder_lr={text_encoder_learning_rate}",
            f"--adam_beta1={adam_beta1}",
            f"--adam_beta2={adam_beta2}",
            f"--optimizer={'adamW' if optimizer == '8bitadam' else optimizer}",
            f"--train_text_encoder_ti_frac={train_text_encoder_ti_frac}",
            f"--lr_scheduler={lr_scheduler}",
            f"--lr_warmup_steps={int(lr_warmup_steps)}",
            f"--rank={int(lora_rank)}",
            f"--max_train_steps={int(max_train_steps)}",
            f"--checkpointing_steps={int(checkpointing_steps)}",
            f"--seed={int(seed)}",
            f"--prior_loss_weight={prior_loss_weight}",
            f"--num_new_tokens_per_abstraction={int(num_new_tokens_per_abstraction)}",
            f"--num_train_epochs={int(num_train_epochs)}",
            f"--prodigy_beta3={prodigy_beta3}",
            f"--adam_weight_decay={adam_weight_decay}",
            f"--adam_weight_decay_text_encoder={adam_weight_decay_text_encoder}",
            f"--adam_epsilon={adam_epsilon}",
            f"--prodigy_decouple={prodigy_decouple}",
            f"--prodigy_use_bias_correction={prodigy_use_bias_correction}",
            f"--prodigy_safeguard_warmup={prodigy_safeguard_warmup}",
            f"--max_grad_norm={max_grad_norm}",
            f"--lr_num_cycles={int(lr_num_cycles)}",
            f"--lr_power={lr_power}",
            f"--dataloader_num_workers={int(dataloader_num_workers)}",
            f"--local_rank={int(local_rank)}",
            "--cache_latents"
            ]
    if optimizer == "8bitadam":
        commands.append("--use_8bit_adam")
    if gradient_checkpointing:
        commands.append("--gradient_checkpointing")
    
    if train_text_encoder_ti:
        commands.append("--train_text_encoder_ti")
    elif train_text_encoder:
        commands.append("--train_text_encoder")
        commands.append(f"--train_text_encoder_frac={train_text_encoder_frac}")
    if enable_xformers_memory_efficient_attention: 
        commands.append("--enable_xformers_memory_efficient_attention")
    if use_snr_gamma: 
        commands.append(f"--snr_gamma={snr_gamma}")
    if scale_lr:
        commands.append("--scale_lr")
    if with_prior_preservation:
        commands.append(f"--with_prior_preservation")
        commands.append(f"--class_prompt={class_prompt}")
        commands.append(f"--num_class_images={int(num_class_images)}")
        if(class_images):
            class_folder = str(uuid.uuid4())
            if not os.path.exists(class_folder):
                os.makedirs(class_folder)
            for image in class_images:
                shutil.copy(image, class_folder)
            commands.append(f"--class_data_dir={class_folder}")

    from train_dreambooth_lora_sdxl_advanced import main as train_main, parse_args as parse_train_args
    args = parse_train_args(commands)
    train_main(args)
    return "ok!"

@spaces.GPU()
def run_captioning(*inputs):
    model.to("cuda")
    images = inputs[0]
    training_option = inputs[-1]
    final_captions = [""] * MAX_IMAGES
    for index, image in enumerate(images):
        original_caption = inputs[index + 1]
        pil_image = Image.open(image)  
        blip_inputs = processor(images=pil_image, return_tensors="pt").to(device, torch.float16)
        generated_ids = model.generate(**blip_inputs)
        generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
        if training_option == "style":
            final_caption = generated_text + " " + original_caption
        else:
            final_caption = original_caption + " " + generated_text
        final_captions[index] = final_caption
        yield final_captions

def check_token(token):
    try:
        api = HfApi(token=token)
        user_data = api.whoami()
    except Exception as e:
        gr.Warning("Invalid user token. Make sure to get your Hugging Face token from the settings page")
        return gr.update(visible=False), gr.update(visible=False)
    else:
        if (user_data['auth']['accessToken']['role'] != "write"):
            gr.Warning("Ops, you've uploaded a Read token. You need to use a Write token!")
        else:
            if user_data['canPay']:
                return gr.update(visible=False), gr.update(visible=True)    
            else:
                return gr.update(visible=True), gr.update(visible=False)
                
        return gr.update(visible=False), gr.update(visible=False)

def check_if_tok(sentence, textual_inversion):
    if "TOK" not in sentence and textual_inversion:
        gr.Warning("⚠️ You've removed the special token TOK from your concept sentence. This will degrade performance as this special token is needed for textual inversion. Use TOK to describe what you are training.")
        
css = '''.gr-group{background-color: transparent;box-shadow: var(--block-shadow)}
.gr-group .hide-container{padding: 1em; background: var(--block-background-fill) !important}
.gr-group img{object-fit: cover}
#main_title{text-align:center}
#main_title h1 {font-size: 2.25rem}
#main_title h3, #main_title p{margin-top: 0;font-size: 1.25em}
#training_cost h2{margin-top: 10px;padding: 0.5em;border: 1px solid var(--block-border-color);font-size: 1.25em}
#training_cost h4{margin-top: 1.25em;margin-bottom: 0}
#training_cost small{font-weight: normal}
.accordion {color: var(--body-text-color)}
.main_unlogged{opacity: 0.5;pointer-events: none}
.login_logout{width: 100% !important}
#login {font-size: 0px;width: 100% !important;margin: 0 auto}
#login:after {content: 'Authorize this app to train your model';visibility: visible;display: block;font-size: var(--button-large-text-size)}
'''
theme = gr.themes.Monochrome(
    text_size=gr.themes.Size(lg="18px", md="15px", sm="13px", xl="22px", xs="12px", xxl="24px", xxs="9px"),
    font=[gr.themes.GoogleFont('Source Sans Pro'), 'ui-sans-serif', 'system-ui', 'sans-serif'],
)
#def swap_opacity(token: gr.OAuthToken | None):
#    if token is None:
#        return gr.update(elem_classes=["main_unlogged"], elem_id="login")
#    else:
#        return gr.update(elem_classes=["main_logged"])
        
with gr.Blocks(css=css, theme=theme) as demo:
    dataset_folder = gr.State()
    gr.Markdown('''# LoRA Ease 🧞‍♂️
### Train a high quality SDXL LoRA in a breeze ༄ with state-of-the-art techniques
<small>Dreambooth with Pivotal Tuning, Prodigy and more! Use the trained LoRAs with diffusers, AUTO1111, Comfy. [blog about the training script](#), [Colab Pro](#), [run locally or in a cloud](#)</small>''', elem_id="main_title")
    #gr.LoginButton(elem_classes=["login_logout"])
    with gr.Column(elem_classes=["main_logged"]) as main_ui:
        lora_name = gr.Textbox(label="The name of your LoRA", info="This has to be a unique name", placeholder="e.g.: Persian Miniature Painting style, Cat Toy")
        training_option = gr.Radio(
            label="What are you training?", choices=["object", "style", "character", "face", "custom"]
        )
        concept_sentence = gr.Textbox(
            label="Concept sentence",
            info="Sentence to be used in all images for captioning. TOK is a special mandatory token, used to teach the model your concept.",
            placeholder="e.g.: A photo of TOK, in the style of TOK",
            visible=False,
            interactive=True,
        )
        with gr.Group(visible=False) as image_upload:
            with gr.Row():
                images = gr.File(
                    file_types=["image"],
                    label="Upload your images",
                    file_count="multiple",
                    interactive=True,
                    visible=True,
                    scale=1,
                )
                with gr.Column(scale=3, visible=False) as captioning_area:
                    with gr.Column():
                        gr.Markdown(
                            """# Custom captioning
    To improve the quality of your outputs, you can add a custom caption for each image, describing exactly what is taking place in each of them. Including TOK is mandatory. You can leave things as is if you don't want to include captioning.
                                    """
                        )
                        do_captioning = gr.Button("Add AI captions with BLIP-2")
                        output_components = [captioning_area]
                        caption_list = []
                        for i in range(1, MAX_IMAGES + 1):
                            locals()[f"captioning_row_{i}"] = gr.Row(visible=False)
                            with locals()[f"captioning_row_{i}"]:
                                locals()[f"image_{i}"] = gr.Image(
                                    width=111,
                                    height=111,
                                    min_width=111,
                                    interactive=False,
                                    scale=2,
                                    show_label=False,
                                    show_share_button=False,
                                    show_download_button=False
                                )
                                locals()[f"caption_{i}"] = gr.Textbox(
                                    label=f"Caption {i}", scale=15, interactive=True
                                )
    
                            output_components.append(locals()[f"captioning_row_{i}"])
                            output_components.append(locals()[f"image_{i}"])
                            output_components.append(locals()[f"caption_{i}"])
                            caption_list.append(locals()[f"caption_{i}"])
        with gr.Accordion(open=False, label="Advanced options", visible=False, elem_classes=['accordion']) as advanced:
            with gr.Row():
                with gr.Column():
                    optimizer = gr.Dropdown(
                        label="Optimizer",
                        info="Prodigy is an auto-optimizer and works good by default. If you prefer to set your own learning rates, change it to AdamW. If you don't have enough VRAM to train with AdamW, pick 8-bit Adam.",
                        choices=[
                            ("Prodigy", "prodigy"),
                            ("AdamW", "adamW"),
                            ("8-bit Adam", "8bitadam"),
                        ],
                        value="prodigy",
                        interactive=True,
                    )
                    use_snr_gamma = gr.Checkbox(label="Use SNR Gamma")
                    snr_gamma = gr.Number(
                        label="snr_gamma",
                        info="SNR weighting gamma to re-balance the loss",
                        value=5.000,
                        step=0.1,
                        visible=False,
                    )
                    mixed_precision = gr.Dropdown(
                        label="Mixed Precision",
                        choices=["no", "fp16", "bf16"],
                        value="bf16",
                    )
                    learning_rate = gr.Number(
                        label="UNet Learning rate",
                        minimum=0.0,
                        maximum=10.0,
                        step=0.0000001,
                        value=1.0,  # For prodigy you start high and it will optimize down
                    )
                    max_train_steps = gr.Number(
                        label="Max train steps", minimum=1, maximum=50000, value=1000
                    )
                    lora_rank = gr.Number(
                        label="LoRA Rank",
                        info="Rank for the Low Rank Adaptation (LoRA), a higher rank produces a larger LoRA",
                        value=8,
                        step=2,
                        minimum=2,
                        maximum=1024,
                    )
                    repeats = gr.Number(
                        label="Repeats",
                        info="How many times to repeat the training data.",
                        value=1,
                        minimum=1,
                        maximum=200,
                    )
                with gr.Column():
                    with_prior_preservation = gr.Checkbox(
                        label="Prior preservation loss",
                        info="Prior preservation helps to ground the model to things that are similar to your concept. Good for faces.",
                        value=False,
                    )
                    with gr.Column(visible=False) as prior_preservation_params:
                        with gr.Tab("prompt"):
                            class_prompt = gr.Textbox(
                                label="Class Prompt",
                                info="The prompt that will be used to generate your class images",
                            )
    
                        with gr.Tab("images"):
                            class_images = gr.File(
                                file_types=["image"],
                                label="Upload your images",
                                file_count="multiple",
                            )
                        num_class_images = gr.Number(
                            label="Number of class images, if there are less images uploaded then the number you put here, additional images will be sampled with Class Prompt",
                            value=20,
                        )
                    train_text_encoder_ti = gr.Checkbox(
                        label="Do textual inversion",
                        value=True,
                        info="Will train a textual inversion embedding together with the LoRA. Increases quality significantly. If untoggled, you can remove the special TOK token from the prompts.",
                    )
                    with gr.Group(visible=True) as pivotal_tuning_params:
                        train_text_encoder_ti_frac = gr.Number(
                            label="Pivot Textual Inversion",
                            info="% of epochs to train textual inversion for",
                            value=0.5,
                            step=0.1,
                        )
                        num_new_tokens_per_abstraction = gr.Number(
                            label="Tokens to train",
                            info="Number of tokens to train in the textual inversion",
                            value=2,
                            minimum=1,
                            maximum=1024,
                            interactive=True,
                        )
                    with gr.Group(visible=False) as text_encoder_train_params:
                        train_text_encoder = gr.Checkbox(
                            label="Train Text Encoder", value=True
                        )
                        train_text_encoder_frac = gr.Number(
                            label="Pivot Text Encoder",
                            info="% of epochs to train the text encoder for",
                            value=0.8,
                            step=0.1,
                        )
                    text_encoder_learning_rate = gr.Number(
                        label="Text encoder learning rate",
                        minimum=0.0,
                        maximum=10.0,
                        step=0.0000001,
                        value=1.0,
                    )
                    seed = gr.Number(label="Seed", value=42)
                    resolution = gr.Number(
                        label="Resolution",
                        info="Only square sizes are supported for now, the value will be width and height",
                        value=1024,
                    )
    
            with gr.Accordion(open=False, label="Even more advanced options", elem_classes=['accordion']):
                with gr.Row():
                    with gr.Column():
                        gradient_accumulation_steps = gr.Number(
                            info="If you change this setting, the pricing calculation will be wrong",
                            label="gradient_accumulation_steps", 
                            value=1
                        )
                        train_batch_size = gr.Number(
                            info="If you change this setting, the pricing calculation will be wrong",
                            label="Train batch size",
                            value=2
                        )
                        num_train_epochs = gr.Number(
                            info="If you change this setting, the pricing calculation will be wrong",
                            label="num_train_epochs",
                            value=1
                        )
                        checkpointing_steps = gr.Number(
                            info="How many steps to save intermediate checkpoints",
                            label="checkpointing_steps",
                            value=5000
                        )
                        prior_loss_weight = gr.Number(
                            label="prior_loss_weight",
                            value=1
                        )
                        gradient_checkpointing = gr.Checkbox(
                            label="gradient_checkpointing",
                            info="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass",
                            value=True,
                        )
                        adam_beta1 = gr.Number(
                            label="adam_beta1",
                            value=0.9,
                            minimum=0,
                            maximum=1,
                            step=0.01
                        )
                        adam_beta2 = gr.Number(
                            label="adam_beta2",
                            minimum=0,
                            maximum=1,
                            step=0.01,
                            value=0.999
                        )
                        use_prodigy_beta3 = gr.Checkbox(
                            label="Use Prodigy Beta 3?"
                        )
                        prodigy_beta3 = gr.Number(
                            label="Prodigy Beta 3",
                            value=None,
                            step=0.01,
                            minimum=0,
                            maximum=1,
                        )
                        prodigy_decouple = gr.Checkbox(
                            label="Prodigy Decouple",
                            value=True
                        )
                        adam_weight_decay = gr.Number(
                            label="Adam Weight Decay",
                            value=1e-04,
                            step=0.00001,
                            minimum=0,
                            maximum=1,
                        )
                        use_adam_weight_decay_text_encoder = gr.Checkbox(
                            label="Use Adam Weight Decay Text Encoder"
                        )
                        adam_weight_decay_text_encoder = gr.Number(
                            label="Adam Weight Decay Text Encoder",
                            value=None,
                            step=0.00001,
                            minimum=0,
                            maximum=1,
                        )
                        adam_epsilon = gr.Number(
                            label="Adam Epsilon",
                            value=1e-08,
                            step=0.00000001,
                            minimum=0,
                            maximum=1,
                        )
                        prodigy_use_bias_correction = gr.Checkbox(
                            label="Prodigy Use Bias Correction",
                            value=True
                        )
                        prodigy_safeguard_warmup = gr.Checkbox(
                            label="Prodigy Safeguard Warmup",
                            value=True
                        )
                        max_grad_norm = gr.Number(
                            label="Max Grad Norm",
                            value=1.0,
                            minimum=0.1,
                            maximum=10,
                            step=0.1,
                        )
                        enable_xformers_memory_efficient_attention = gr.Checkbox(
                            label="enable_xformers_memory_efficient_attention"
                        )
                    with gr.Column():
                        scale_lr = gr.Checkbox(
                            label="Scale learning rate",
                            info="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size",
                        )
                        lr_num_cycles = gr.Number(
                            label="lr_num_cycles",
                            value=1
                        )
                        lr_scheduler = gr.Dropdown(
                            label="lr_scheduler",
                            choices=[
                                "linear",
                                "cosine",
                                "cosine_with_restarts",
                                "polynomial",
                                "constant",
                                "constant_with_warmup",
                            ],
                            value="constant",
                        )
                        lr_power = gr.Number(
                            label="lr_power",
                            value=1.0,
                            minimum=0.1,
                            maximum=10
                        )
                        lr_warmup_steps = gr.Number(
                            label="lr_warmup_steps",
                            value=0
                        )
                        dataloader_num_workers = gr.Number(
                            label="Dataloader num workers", value=0, minimum=0, maximum=64
                        )
                        local_rank = gr.Number(
                            label="local_rank",
                            value=-1
                        )
        with gr.Column(visible=False) as cost_estimation:
            with gr.Group(elem_id="cost_box"):
                training_cost_estimate = gr.Markdown(elem_id="training_cost")
                token = gr.Textbox(label="Your Hugging Face write token", info="A Hugging Face write token you can obtain on the settings page", type="password", placeholder="hf_OhHiThIsIsNoTaReALToKeNGOoDTry")
        with gr.Group(visible=False) as no_payment_method:
            with gr.Row():
                gr.HTML("<h3 style='margin: 0'>Your Hugging Face account doesn't have a payment method set up. Set one up <a href='https://huggingface.co/settings/billing/payment' target='_blank'>here</a> and come back here to train your LoRA</h3>")
                payment_setup = gr.Button("I have set up a payment method")
        
        start = gr.Button("Start training", visible=False, interactive=True)
        progress_area = gr.Markdown("")
    
    #gr.LogoutButton(elem_classes=["login_logout"])
    output_components.insert(1, advanced)
    output_components.insert(1, cost_estimation)
    gr.on(
        triggers=[
            token.change,
            payment_setup.click
        ],
        fn=check_token,
        inputs=token,
        outputs=[no_payment_method, start],
        concurrency_limit=50,
    )
    concept_sentence.change(
        check_if_tok,
        inputs=[concept_sentence, train_text_encoder_ti],
        concurrency_limit=50,
    )
    use_snr_gamma.change(
        lambda x: gr.update(visible=x),
        inputs=use_snr_gamma,
        outputs=snr_gamma,
        queue=False,
    )
    with_prior_preservation.change(
        lambda x: gr.update(visible=x),
        inputs=with_prior_preservation,
        outputs=prior_preservation_params,
        queue=False,
    )
    train_text_encoder_ti.change(
        lambda x: gr.update(visible=x),
        inputs=train_text_encoder_ti,
        outputs=pivotal_tuning_params,
        queue=False,
    ).then(
        lambda x: gr.update(visible=(not x)),
        inputs=train_text_encoder_ti,
        outputs=text_encoder_train_params,
        queue=False,
    ).then(
        lambda x: gr.Warning("As you have disabled Pivotal Tuning, you can remove TOK from your prompts and try to find a unique token for them") if not x else None,
        inputs=train_text_encoder_ti,
        concurrency_limit=50,
    )
    train_text_encoder.change(
        lambda x: [gr.update(visible=x), gr.update(visible=x)],
        inputs=train_text_encoder,
        outputs=[train_text_encoder_frac, text_encoder_learning_rate],
        queue=False,
    )
    class_images.change(
        lambda x: gr.update(value=len(x)),
        inputs=class_images,
        outputs=num_class_images,
        queue=False
    )
    images.upload(
        load_captioning,
        inputs=[images, concept_sentence],
        outputs=output_components,
        queue=False
    ).then(
        change_defaults,
        inputs=[training_option, images],
        outputs=[max_train_steps, repeats, lr_scheduler, lora_rank, with_prior_preservation, class_prompt, class_images],
        queue=False
    )
    images.change(
        check_removed_and_restart,
        inputs=[images],
        outputs=[captioning_area, advanced, cost_estimation],
        queue=False
    )
    training_option.change(
        make_options_visible,
        inputs=training_option,
        outputs=[concept_sentence, image_upload],
        queue=False
    )
    max_train_steps.change(
        calculate_price,
        inputs=[max_train_steps, with_prior_preservation],
        outputs=[training_cost_estimate],
        queue=False
    )
    start.click(
        fn=create_dataset,
        inputs=[images] + caption_list,
        outputs=dataset_folder,
        queue=False
    ).then(
        fn=start_training,
        inputs=[
            lora_name,
            training_option,
            concept_sentence,
            optimizer,
            use_snr_gamma,
            snr_gamma,
            mixed_precision,
            learning_rate,
            train_batch_size,
            max_train_steps,
            lora_rank,
            repeats,
            with_prior_preservation,
            class_prompt,
            class_images,
            num_class_images,
            train_text_encoder_ti,
            train_text_encoder_ti_frac,
            num_new_tokens_per_abstraction,
            train_text_encoder,
            train_text_encoder_frac,
            text_encoder_learning_rate,
            seed,
            resolution,
            num_train_epochs,
            checkpointing_steps,
            prior_loss_weight,
            gradient_accumulation_steps,
            gradient_checkpointing,
            enable_xformers_memory_efficient_attention,
            adam_beta1,
            adam_beta2,
            use_prodigy_beta3,
            prodigy_beta3,
            prodigy_decouple,
            adam_weight_decay,
            use_adam_weight_decay_text_encoder,
            adam_weight_decay_text_encoder,
            adam_epsilon,
            prodigy_use_bias_correction,
            prodigy_safeguard_warmup,
            max_grad_norm,
            scale_lr,
            lr_num_cycles,
            lr_scheduler,
            lr_power,
            lr_warmup_steps,
            dataloader_num_workers,
            local_rank,
            dataset_folder,
            token
        ],
        outputs = progress_area,
        queue=False
    )

    do_captioning.click(
        fn=run_captioning, inputs=[images] + caption_list + [training_option], outputs=caption_list
    )
    #demo.load(fn=swap_opacity, outputs=[main_ui], queue=False, concurrency_limit=50)
if __name__ == "__main__":
    demo.queue()
    demo.launch(share=True)