Spaces:
Running
Running
File size: 2,660 Bytes
0a9bdfb feac218 cfa21c8 feac218 cfa21c8 feac218 0a9bdfb feac218 0a9bdfb feac218 0a9bdfb feac218 cfa21c8 0a9bdfb feac218 ab6505a 0a9bdfb feac218 0a9bdfb a0f5e02 feac218 0a9bdfb feac218 ab6505a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
import os
import wget
from tqdm import tqdm
def download_models(
model_dir: str = os.makedirs('pretrained_weights', exist_ok=True)
):
os.makedirs(model_dir, exist_ok=True)
urls = ['https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth',
'https://huggingface.co/yzd-v/DWPose/resolve/main/dw-ll_ucoco_384.pth',
'https://huggingface.co/TMElyralab/MusePose/resolve/main/MusePose/denoising_unet.pth',
'https://huggingface.co/TMElyralab/MusePose/resolve/main/MusePose/motion_module.pth',
'https://huggingface.co/TMElyralab/MusePose/resolve/main/MusePose/pose_guider.pth',
'https://huggingface.co/TMElyralab/MusePose/resolve/main/MusePose/reference_unet.pth',
'https://huggingface.co/lambdalabs/sd-image-variations-diffusers/resolve/main/unet/diffusion_pytorch_model.bin',
'https://huggingface.co/lambdalabs/sd-image-variations-diffusers/resolve/main/image_encoder/pytorch_model.bin',
'https://huggingface.co/stabilityai/sd-vae-ft-mse/resolve/main/diffusion_pytorch_model.bin'
]
paths = ['dwpose', 'dwpose', 'MusePose', 'MusePose', 'MusePose', 'MusePose', 'sd-image-variations-diffusers/unet', 'image_encoder', 'sd-vae-ft-mse']
for path in paths:
dir = os.path.join(model_dir, path)
os.makedirs(dir, exist_ok=True)
for url, path in tqdm(zip(urls, paths)):
filename = os.path.basename(url)
if filename == "yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth":
filename = "yolox_l_8x8_300e_coco.pth"
full_file_path = os.path.join(model_dir, path, filename)
if not os.path.exists(full_file_path):
print(f"Model '{filename}' does not exists. Downloading to '{full_file_path}'..")
wget.download(url, full_file_path)
config_urls = ['https://huggingface.co/lambdalabs/sd-image-variations-diffusers/resolve/main/unet/config.json',
'https://huggingface.co/lambdalabs/sd-image-variations-diffusers/resolve/main/image_encoder/config.json',
'https://huggingface.co/stabilityai/sd-vae-ft-mse/resolve/main/config.json']
config_paths = ['sd-image-variations-diffusers/unet', 'image_encoder', 'sd-vae-ft-mse']
# saving config files
for url, path in tqdm(zip(config_urls, config_paths)):
filename = os.path.basename(url)
full_file_path = os.path.join(model_dir, path, filename)
if not os.path.exists(full_file_path):
print(f"Model '{filename}' does not exists. Downloading to '{full_file_path}'..")
wget.download(url, full_file_path)
|