Spaces:
Running
Running
import numpy as np | |
import torch | |
import copy | |
import cv2 | |
import os | |
import moviepy.video.io.ImageSequenceClip | |
from datetime import datetime | |
import gc | |
from pose.script.dwpose import DWposeDetector, draw_pose | |
from pose.script.util import size_calculate, warpAffine_kps | |
from downloading_weights import download_models | |
# ZeroGPU | |
import spaces | |
''' | |
Detect dwpose from img, then align it by scale parameters | |
img: frame from the pose video | |
detector: DWpose | |
scales: scale parameters | |
''' | |
class PoseAlignmentInference: | |
def __init__(self, | |
model_dir, | |
output_dir): | |
self.detector = None | |
self.model_paths = { | |
"det_ckpt": os.path.join(model_dir, "dwpose", "yolox_l_8x8_300e_coco.pth"), | |
"pose_ckpt": os.path.join(model_dir, "dwpose", "dw-ll_ucoco_384.pth") | |
} | |
self.config_paths = { | |
"pose_config": os.path.join("pose", "config", "dwpose-l_384x288.py"), | |
"det_config": os.path.join("pose", "config", "yolox_l_8xb8-300e_coco.py"), | |
} | |
self.model_dir = model_dir | |
self.output_dir = os.path.join(output_dir, "pose_alignment") | |
if not os.path.exists(self.output_dir): | |
os.makedirs(self.output_dir) | |
def align_pose( | |
self, | |
vidfn: str, | |
imgfn_refer: str, | |
detect_resolution: int, | |
image_resolution: int, | |
align_frame: int, | |
max_frame: int, | |
): | |
download_models(model_dir=self.model_dir) | |
output_filename = "pose_temp" | |
outfn=os.path.abspath(os.path.join(self.output_dir, f'{output_filename}_demo.mp4')) | |
outfn_align_pose_video=os.path.abspath(os.path.join(self.output_dir, f'{output_filename}.mp4')) | |
video = cv2.VideoCapture(vidfn) | |
width= video.get(cv2.CAP_PROP_FRAME_WIDTH) | |
height= video.get(cv2.CAP_PROP_FRAME_HEIGHT) | |
total_frame= video.get(cv2.CAP_PROP_FRAME_COUNT) | |
fps= video.get(cv2.CAP_PROP_FPS) | |
print("height:", height) | |
print("width:", width) | |
print("fps:", fps) | |
H_in, W_in = height, width | |
H_out, W_out = size_calculate(H_in,W_in, detect_resolution) | |
H_out, W_out = size_calculate(H_out,W_out, image_resolution) | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
self.detector = DWposeDetector( | |
det_config = self.config_paths["det_config"], | |
det_ckpt = self.model_paths["det_ckpt"], | |
pose_config = self.config_paths["pose_config"], | |
pose_ckpt = self.model_paths["pose_ckpt"], | |
keypoints_only=False | |
) | |
detector = self.detector.to(device) | |
refer_img = cv2.imread(imgfn_refer) | |
output_refer, pose_refer = detector(refer_img,detect_resolution=detect_resolution, image_resolution=image_resolution, output_type='cv2',return_pose_dict=True) | |
body_ref_img = pose_refer['bodies']['candidate'] | |
hands_ref_img = pose_refer['hands'] | |
faces_ref_img = pose_refer['faces'] | |
output_refer = cv2.cvtColor(output_refer, cv2.COLOR_RGB2BGR) | |
skip_frames = align_frame | |
max_frame = max_frame | |
pose_list, video_frame_buffer, video_pose_buffer = [], [], [] | |
cap = cv2.VideoCapture('2.mp4') # 读取视频 | |
while cap.isOpened(): # 当视频被打开时: | |
ret, frame = cap.read() # 读取视频,读取到的某一帧存储到frame,若是读取成功,ret为True,反之为False | |
if ret: # 若是读取成功 | |
cv2.imshow('frame', frame) # 显示读取到的这一帧画面 | |
key = cv2.waitKey(25) # 等待一段时间,并且检测键盘输入 | |
if key == ord('q'): # 若是键盘输入'q',则退出,释放视频 | |
cap.release() # 释放视频 | |
break | |
else: | |
cap.release() | |
cv2.destroyAllWindows() # 关闭所有窗口 | |
for i in range(max_frame): | |
ret, img = video.read() | |
if img is None: | |
break | |
else: | |
if i < skip_frames: | |
continue | |
video_frame_buffer.append(img) | |
# estimate scale parameters by the 1st frame in the video | |
if i==skip_frames: | |
output_1st_img, pose_1st_img = detector(img, detect_resolution, image_resolution, output_type='cv2', return_pose_dict=True) | |
body_1st_img = pose_1st_img['bodies']['candidate'] | |
hands_1st_img = pose_1st_img['hands'] | |
faces_1st_img = pose_1st_img['faces'] | |
''' | |
计算逻辑: | |
1. 先把 ref 和 pose 的高 resize 到一样,且都保持原来的长宽比。 | |
2. 用点在图中的实际坐标来计算。 | |
3. 实际计算中,把h的坐标归一化到 [0, 1], w为[0, W/H] | |
4. 由于 dwpose 的输出本来就是归一化的坐标,所以h不需要变,w要乘W/H | |
注意:dwpose 输出是 (w, h) | |
''' | |
# h不变,w缩放到原比例 | |
ref_H, ref_W = refer_img.shape[0], refer_img.shape[1] | |
ref_ratio = ref_W / ref_H | |
body_ref_img[:, 0] = body_ref_img[:, 0] * ref_ratio | |
hands_ref_img[:, :, 0] = hands_ref_img[:, :, 0] * ref_ratio | |
faces_ref_img[:, :, 0] = faces_ref_img[:, :, 0] * ref_ratio | |
video_ratio = width / height | |
body_1st_img[:, 0] = body_1st_img[:, 0] * video_ratio | |
hands_1st_img[:, :, 0] = hands_1st_img[:, :, 0] * video_ratio | |
faces_1st_img[:, :, 0] = faces_1st_img[:, :, 0] * video_ratio | |
# scale | |
align_args = dict() | |
dist_1st_img = np.linalg.norm(body_1st_img[0]-body_1st_img[1]) # 0.078 | |
dist_ref_img = np.linalg.norm(body_ref_img[0]-body_ref_img[1]) # 0.106 | |
align_args["scale_neck"] = dist_ref_img / dist_1st_img # align / pose = ref / 1st | |
dist_1st_img = np.linalg.norm(body_1st_img[16]-body_1st_img[17]) | |
dist_ref_img = np.linalg.norm(body_ref_img[16]-body_ref_img[17]) | |
align_args["scale_face"] = dist_ref_img / dist_1st_img | |
dist_1st_img = np.linalg.norm(body_1st_img[2]-body_1st_img[5]) # 0.112 | |
dist_ref_img = np.linalg.norm(body_ref_img[2]-body_ref_img[5]) # 0.174 | |
align_args["scale_shoulder"] = dist_ref_img / dist_1st_img | |
dist_1st_img = np.linalg.norm(body_1st_img[2]-body_1st_img[3]) # 0.895 | |
dist_ref_img = np.linalg.norm(body_ref_img[2]-body_ref_img[3]) # 0.134 | |
s1 = dist_ref_img / dist_1st_img | |
dist_1st_img = np.linalg.norm(body_1st_img[5]-body_1st_img[6]) | |
dist_ref_img = np.linalg.norm(body_ref_img[5]-body_ref_img[6]) | |
s2 = dist_ref_img / dist_1st_img | |
align_args["scale_arm_upper"] = (s1+s2)/2 # 1.548 | |
dist_1st_img = np.linalg.norm(body_1st_img[3]-body_1st_img[4]) | |
dist_ref_img = np.linalg.norm(body_ref_img[3]-body_ref_img[4]) | |
s1 = dist_ref_img / dist_1st_img | |
dist_1st_img = np.linalg.norm(body_1st_img[6]-body_1st_img[7]) | |
dist_ref_img = np.linalg.norm(body_ref_img[6]-body_ref_img[7]) | |
s2 = dist_ref_img / dist_1st_img | |
align_args["scale_arm_lower"] = (s1+s2)/2 | |
# hand | |
dist_1st_img = np.zeros(10) | |
dist_ref_img = np.zeros(10) | |
dist_1st_img[0] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,1]) | |
dist_1st_img[1] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,5]) | |
dist_1st_img[2] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,9]) | |
dist_1st_img[3] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,13]) | |
dist_1st_img[4] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,17]) | |
dist_1st_img[5] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,1]) | |
dist_1st_img[6] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,5]) | |
dist_1st_img[7] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,9]) | |
dist_1st_img[8] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,13]) | |
dist_1st_img[9] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,17]) | |
dist_ref_img[0] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,1]) | |
dist_ref_img[1] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,5]) | |
dist_ref_img[2] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,9]) | |
dist_ref_img[3] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,13]) | |
dist_ref_img[4] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,17]) | |
dist_ref_img[5] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,1]) | |
dist_ref_img[6] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,5]) | |
dist_ref_img[7] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,9]) | |
dist_ref_img[8] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,13]) | |
dist_ref_img[9] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,17]) | |
ratio = 0 | |
count = 0 | |
for i in range (10): | |
if dist_1st_img[i] != 0: | |
ratio = ratio + dist_ref_img[i]/dist_1st_img[i] | |
count = count + 1 | |
if count!=0: | |
align_args["scale_hand"] = (ratio/count+align_args["scale_arm_upper"]+align_args["scale_arm_lower"])/3 | |
else: | |
align_args["scale_hand"] = (align_args["scale_arm_upper"]+align_args["scale_arm_lower"])/2 | |
# body | |
dist_1st_img = np.linalg.norm(body_1st_img[1] - (body_1st_img[8] + body_1st_img[11])/2 ) | |
dist_ref_img = np.linalg.norm(body_ref_img[1] - (body_ref_img[8] + body_ref_img[11])/2 ) | |
align_args["scale_body_len"]=dist_ref_img / dist_1st_img | |
dist_1st_img = np.linalg.norm(body_1st_img[8]-body_1st_img[9]) | |
dist_ref_img = np.linalg.norm(body_ref_img[8]-body_ref_img[9]) | |
s1 = dist_ref_img / dist_1st_img | |
dist_1st_img = np.linalg.norm(body_1st_img[11]-body_1st_img[12]) | |
dist_ref_img = np.linalg.norm(body_ref_img[11]-body_ref_img[12]) | |
s2 = dist_ref_img / dist_1st_img | |
align_args["scale_leg_upper"] = (s1+s2)/2 | |
dist_1st_img = np.linalg.norm(body_1st_img[9]-body_1st_img[10]) | |
dist_ref_img = np.linalg.norm(body_ref_img[9]-body_ref_img[10]) | |
s1 = dist_ref_img / dist_1st_img | |
dist_1st_img = np.linalg.norm(body_1st_img[12]-body_1st_img[13]) | |
dist_ref_img = np.linalg.norm(body_ref_img[12]-body_ref_img[13]) | |
s2 = dist_ref_img / dist_1st_img | |
align_args["scale_leg_lower"] = (s1+s2)/2 | |
#################### | |
#################### | |
# need adjust nan | |
for k,v in align_args.items(): | |
if np.isnan(v): | |
align_args[k]=1 | |
# centre offset (the offset of key point 1) | |
offset = body_ref_img[1] - body_1st_img[1] | |
# pose align | |
pose_img, pose_ori = detector(img, detect_resolution, image_resolution, output_type='cv2', return_pose_dict=True) | |
video_pose_buffer.append(pose_img) | |
pose_align = self.align_img(img, pose_ori, align_args, detect_resolution, image_resolution) | |
# add centre offset | |
pose = pose_align | |
pose['bodies']['candidate'] = pose['bodies']['candidate'] + offset | |
pose['hands'] = pose['hands'] + offset | |
pose['faces'] = pose['faces'] + offset | |
# h不变,w从绝对坐标缩放回0-1 注意这里要回到ref的坐标系 | |
pose['bodies']['candidate'][:, 0] = pose['bodies']['candidate'][:, 0] / ref_ratio | |
pose['hands'][:, :, 0] = pose['hands'][:, :, 0] / ref_ratio | |
pose['faces'][:, :, 0] = pose['faces'][:, :, 0] / ref_ratio | |
pose_list.append(pose) | |
# stack | |
body_list = [pose['bodies']['candidate'][:18] for pose in pose_list] | |
body_list_subset = [pose['bodies']['subset'][:1] for pose in pose_list] | |
hands_list = [pose['hands'][:2] for pose in pose_list] | |
faces_list = [pose['faces'][:1] for pose in pose_list] | |
body_seq = np.stack(body_list , axis=0) | |
body_seq_subset = np.stack(body_list_subset, axis=0) | |
hands_seq = np.stack(hands_list , axis=0) | |
faces_seq = np.stack(faces_list , axis=0) | |
# concatenate and paint results | |
H = 768 # paint height | |
W1 = int((H/ref_H * ref_W)//2 *2) | |
W2 = int((H/height * width)//2 *2) | |
result_demo = [] # = Writer(args, None, H, 3*W1+2*W2, outfn, fps) | |
result_pose_only = [] # Writer(args, None, H, W1, args.outfn_align_pose_video, fps) | |
for i in range(len(body_seq)): | |
pose_t={} | |
pose_t["bodies"]={} | |
pose_t["bodies"]["candidate"]=body_seq[i] | |
pose_t["bodies"]["subset"]=body_seq_subset[i] | |
pose_t["hands"]=hands_seq[i] | |
pose_t["faces"]=faces_seq[i] | |
ref_img = cv2.cvtColor(refer_img, cv2.COLOR_RGB2BGR) | |
ref_img = cv2.resize(ref_img, (W1, H)) | |
ref_pose= cv2.resize(output_refer, (W1, H)) | |
output_transformed = draw_pose( | |
pose_t, | |
int(H_in*1024/W_in), | |
1024, | |
draw_face=False, | |
) | |
output_transformed = cv2.cvtColor(output_transformed, cv2.COLOR_BGR2RGB) | |
output_transformed = cv2.resize(output_transformed, (W1, H)) | |
video_frame = cv2.resize(video_frame_buffer[i], (W2, H)) | |
video_pose = cv2.resize(video_pose_buffer[i], (W2, H)) | |
res = np.concatenate([ref_img, ref_pose, output_transformed, video_frame, video_pose], axis=1) | |
result_demo.append(res) | |
result_pose_only.append(output_transformed) | |
print(f"pose_list len: {len(pose_list)}") | |
clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(result_demo, fps=fps) | |
clip.write_videofile(outfn, fps=fps) | |
clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(result_pose_only, fps=fps) | |
clip.write_videofile(outfn_align_pose_video, fps=fps) | |
print('pose align done') | |
self.release_vram() | |
return outfn_align_pose_video, outfn | |
def release_vram(self): | |
if self.detector is not None: | |
del self.detector | |
self.detector = None | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
gc.collect() | |
def align_img(img, pose_ori, scales, detect_resolution, image_resolution): | |
body_pose = copy.deepcopy(pose_ori['bodies']['candidate']) | |
hands = copy.deepcopy(pose_ori['hands']) | |
faces = copy.deepcopy(pose_ori['faces']) | |
''' | |
计算逻辑: | |
0. 该函数内进行绝对变换,始终保持人体中心点 body_pose[1] 不变 | |
1. 先把 ref 和 pose 的高 resize 到一样,且都保持原来的长宽比。 | |
2. 用点在图中的实际坐标来计算。 | |
3. 实际计算中,把h的坐标归一化到 [0, 1], w为[0, W/H] | |
4. 由于 dwpose 的输出本来就是归一化的坐标,所以h不需要变,w要乘W/H | |
注意:dwpose 输出是 (w, h) | |
''' | |
# h不变,w缩放到原比例 | |
H_in, W_in, C_in = img.shape | |
video_ratio = W_in / H_in | |
body_pose[:, 0] = body_pose[:, 0] * video_ratio | |
hands[:, :, 0] = hands[:, :, 0] * video_ratio | |
faces[:, :, 0] = faces[:, :, 0] * video_ratio | |
# scales of 10 body parts | |
scale_neck = scales["scale_neck"] | |
scale_face = scales["scale_face"] | |
scale_shoulder = scales["scale_shoulder"] | |
scale_arm_upper = scales["scale_arm_upper"] | |
scale_arm_lower = scales["scale_arm_lower"] | |
scale_hand = scales["scale_hand"] | |
scale_body_len = scales["scale_body_len"] | |
scale_leg_upper = scales["scale_leg_upper"] | |
scale_leg_lower = scales["scale_leg_lower"] | |
scale_sum = 0 | |
count = 0 | |
scale_list = [scale_neck, scale_face, scale_shoulder, scale_arm_upper, scale_arm_lower, scale_hand, | |
scale_body_len, scale_leg_upper, scale_leg_lower] | |
for i in range(len(scale_list)): | |
if not np.isinf(scale_list[i]): | |
scale_sum = scale_sum + scale_list[i] | |
count = count + 1 | |
for i in range(len(scale_list)): | |
if np.isinf(scale_list[i]): | |
scale_list[i] = scale_sum / count | |
# offsets of each part | |
offset = dict() | |
offset["14_15_16_17_to_0"] = body_pose[[14, 15, 16, 17], :] - body_pose[[0], :] | |
offset["3_to_2"] = body_pose[[3], :] - body_pose[[2], :] | |
offset["4_to_3"] = body_pose[[4], :] - body_pose[[3], :] | |
offset["6_to_5"] = body_pose[[6], :] - body_pose[[5], :] | |
offset["7_to_6"] = body_pose[[7], :] - body_pose[[6], :] | |
offset["9_to_8"] = body_pose[[9], :] - body_pose[[8], :] | |
offset["10_to_9"] = body_pose[[10], :] - body_pose[[9], :] | |
offset["12_to_11"] = body_pose[[12], :] - body_pose[[11], :] | |
offset["13_to_12"] = body_pose[[13], :] - body_pose[[12], :] | |
offset["hand_left_to_4"] = hands[1, :, :] - body_pose[[4], :] | |
offset["hand_right_to_7"] = hands[0, :, :] - body_pose[[7], :] | |
# neck | |
c_ = body_pose[1] | |
cx = c_[0] | |
cy = c_[1] | |
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_neck) | |
neck = body_pose[[0], :] | |
neck = warpAffine_kps(neck, M) | |
body_pose[[0], :] = neck | |
# body_pose_up_shoulder | |
c_ = body_pose[0] | |
cx = c_[0] | |
cy = c_[1] | |
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_face) | |
body_pose_up_shoulder = offset["14_15_16_17_to_0"] + body_pose[[0], :] | |
body_pose_up_shoulder = warpAffine_kps(body_pose_up_shoulder, M) | |
body_pose[[14, 15, 16, 17], :] = body_pose_up_shoulder | |
# shoulder | |
c_ = body_pose[1] | |
cx = c_[0] | |
cy = c_[1] | |
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_shoulder) | |
body_pose_shoulder = body_pose[[2, 5], :] | |
body_pose_shoulder = warpAffine_kps(body_pose_shoulder, M) | |
body_pose[[2, 5], :] = body_pose_shoulder | |
# arm upper left | |
c_ = body_pose[2] | |
cx = c_[0] | |
cy = c_[1] | |
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_arm_upper) | |
elbow = offset["3_to_2"] + body_pose[[2], :] | |
elbow = warpAffine_kps(elbow, M) | |
body_pose[[3], :] = elbow | |
# arm lower left | |
c_ = body_pose[3] | |
cx = c_[0] | |
cy = c_[1] | |
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_arm_lower) | |
wrist = offset["4_to_3"] + body_pose[[3], :] | |
wrist = warpAffine_kps(wrist, M) | |
body_pose[[4], :] = wrist | |
# hand left | |
c_ = body_pose[4] | |
cx = c_[0] | |
cy = c_[1] | |
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_hand) | |
hand = offset["hand_left_to_4"] + body_pose[[4], :] | |
hand = warpAffine_kps(hand, M) | |
hands[1, :, :] = hand | |
# arm upper right | |
c_ = body_pose[5] | |
cx = c_[0] | |
cy = c_[1] | |
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_arm_upper) | |
elbow = offset["6_to_5"] + body_pose[[5], :] | |
elbow = warpAffine_kps(elbow, M) | |
body_pose[[6], :] = elbow | |
# arm lower right | |
c_ = body_pose[6] | |
cx = c_[0] | |
cy = c_[1] | |
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_arm_lower) | |
wrist = offset["7_to_6"] + body_pose[[6], :] | |
wrist = warpAffine_kps(wrist, M) | |
body_pose[[7], :] = wrist | |
# hand right | |
c_ = body_pose[7] | |
cx = c_[0] | |
cy = c_[1] | |
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_hand) | |
hand = offset["hand_right_to_7"] + body_pose[[7], :] | |
hand = warpAffine_kps(hand, M) | |
hands[0, :, :] = hand | |
# body len | |
c_ = body_pose[1] | |
cx = c_[0] | |
cy = c_[1] | |
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_body_len) | |
body_len = body_pose[[8, 11], :] | |
body_len = warpAffine_kps(body_len, M) | |
body_pose[[8, 11], :] = body_len | |
# leg upper left | |
c_ = body_pose[8] | |
cx = c_[0] | |
cy = c_[1] | |
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_leg_upper) | |
knee = offset["9_to_8"] + body_pose[[8], :] | |
knee = warpAffine_kps(knee, M) | |
body_pose[[9], :] = knee | |
# leg lower left | |
c_ = body_pose[9] | |
cx = c_[0] | |
cy = c_[1] | |
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_leg_lower) | |
ankle = offset["10_to_9"] + body_pose[[9], :] | |
ankle = warpAffine_kps(ankle, M) | |
body_pose[[10], :] = ankle | |
# leg upper right | |
c_ = body_pose[11] | |
cx = c_[0] | |
cy = c_[1] | |
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_leg_upper) | |
knee = offset["12_to_11"] + body_pose[[11], :] | |
knee = warpAffine_kps(knee, M) | |
body_pose[[12], :] = knee | |
# leg lower right | |
c_ = body_pose[12] | |
cx = c_[0] | |
cy = c_[1] | |
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_leg_lower) | |
ankle = offset["13_to_12"] + body_pose[[12], :] | |
ankle = warpAffine_kps(ankle, M) | |
body_pose[[13], :] = ankle | |
# none part | |
body_pose_none = pose_ori['bodies']['candidate'] == -1. | |
hands_none = pose_ori['hands'] == -1. | |
faces_none = pose_ori['faces'] == -1. | |
body_pose[body_pose_none] = -1. | |
hands[hands_none] = -1. | |
nan = float('nan') | |
if len(hands[np.isnan(hands)]) > 0: | |
print('nan') | |
faces[faces_none] = -1. | |
# last check nan -> -1. | |
body_pose = np.nan_to_num(body_pose, nan=-1.) | |
hands = np.nan_to_num(hands, nan=-1.) | |
faces = np.nan_to_num(faces, nan=-1.) | |
# return | |
pose_align = copy.deepcopy(pose_ori) | |
pose_align['bodies']['candidate'] = body_pose | |
pose_align['hands'] = hands | |
pose_align['faces'] = faces | |
return pose_align | |