Spaces:
Running
Running
import gradio as gr | |
import argparse | |
import os | |
from musepose_inference import MusePoseInference | |
from pose_align import PoseAlignmentInference | |
from downloading_weights import download_models | |
class App: | |
def __init__(self, args): | |
self.pose_alignment_infer = PoseAlignmentInference( | |
model_dir=args.model_dir, | |
output_dir=args.output_dir | |
) | |
self.musepose_infer = MusePoseInference( | |
model_dir=args.model_dir, | |
output_dir=args.output_dir | |
) | |
download_models(model_dir=args.model_dir) | |
def musepose_demo(self): | |
with gr.Blocks() as demo: | |
with gr.Tabs(): | |
with gr.TabItem('Step1: Pose Alignment'): | |
with gr.Row(): | |
with gr.Column(scale=3): | |
img_input = gr.Image(label="Input Image here", type="filepath", scale=5) | |
vid_dance_input = gr.Video(label="Input Dance Video", scale=5) | |
with gr.Column(scale=3): | |
vid_dance_output = gr.Video(label="Aligned pose output will be displayed here", scale=5) | |
vid_dance_output_demo = gr.Video(label="Output demo video will be displayed here", scale=5) | |
with gr.Column(scale=3): | |
with gr.Column(): | |
nb_detect_resolution = gr.Number(label="Detect Resolution", value=512, precision=0) | |
nb_image_resolution = gr.Number(label="Image Resolution.", value=720, precision=0) | |
nb_align_frame = gr.Number(label="Align Frame", value=0, precision=0) | |
nb_max_frame = gr.Number(label="Max Frame", value=300, precision=0) | |
with gr.Row(): | |
btn_algin_pose = gr.Button("ALIGN POSE", variant="primary") | |
btn_algin_pose.click(fn=self.pose_alignment_infer.align_pose, | |
inputs=[vid_dance_input, img_input, nb_detect_resolution, nb_image_resolution, | |
nb_align_frame, nb_max_frame], | |
outputs=[vid_dance_output, vid_dance_output_demo]) | |
with gr.TabItem('Step2: MusePose Inference'): | |
with gr.Row(): | |
with gr.Column(scale=3): | |
img_input = gr.Image(label="Input Image here", type="filepath", scale=5) | |
vid_pose_input = gr.Video(label="Input Aligned Pose Video here", scale=5) | |
with gr.Column(scale=3): | |
vid_output = gr.Video(label="Output Video will be displayed here", scale=5) | |
vid_output_demo = gr.Video(label="Output demo video will be displayed here", scale=5) | |
with gr.Column(scale=3): | |
with gr.Column(): | |
weight_dtype = gr.Dropdown(label="Compute Type", choices=["fp16", "fp32"], | |
value="fp16") | |
nb_width = gr.Number(label="Width.", value=512, precision=0) | |
nb_height = gr.Number(label="Height.", value=512, precision=0) | |
nb_video_frame_length = gr.Number(label="Video Frame Length", value=300, precision=0) | |
nb_video_slice_frame_length = gr.Number(label="Video Slice Frame Number ", value=48, | |
precision=0) | |
nb_video_slice_overlap_frame_number = gr.Number( | |
label="Video Slice Overlap Frame Number", value=4, precision=0) | |
nb_cfg = gr.Number(label="CFG (Classifier Free Guidance)", value=3.5, precision=0) | |
nb_seed = gr.Number(label="Seed", value=99, precision=0) | |
nb_steps = gr.Number(label="DDIM Sampling Steps", value=20, precision=0) | |
nb_fps = gr.Number(label="FPS (Frames Per Second) ", value=-1, precision=0, | |
info="Set to '-1' to use same FPS with pose's") | |
nb_skip = gr.Number(label="SKIP (Frame Sample Rate = SKIP+1)", value=1, precision=0) | |
with gr.Row(): | |
btn_generate = gr.Button("GENERATE", variant="primary") | |
btn_generate.click(fn=self.musepose_infer.infer_musepose, | |
inputs=[img_input, vid_pose_input, weight_dtype, nb_width, nb_height, | |
nb_video_frame_length, | |
nb_video_slice_frame_length, nb_video_slice_overlap_frame_number, nb_cfg, | |
nb_seed, | |
nb_steps, nb_fps, nb_skip], | |
outputs=[vid_output, vid_output_demo]) | |
return demo | |
def launch(self): | |
demo = self.musepose_demo() | |
demo.queue().launch() | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--model_dir', type=str, default=os.path.join("pretrained_weights"), help='Pretrained models directory for MusePose') | |
parser.add_argument('--output_dir', type=str, default=os.path.join("assets", "videos"), help='Output directory for the result') | |
args = parser.parse_args() | |
app = App(args=args) | |
app.launch() |