Spaces:
Runtime error
Runtime error
File size: 1,266 Bytes
34a512f ca2843d 34a512f ca2843d 34a512f 0ea6423 34a512f ca2843d 34a512f ca2843d 34a512f ca2843d 34a512f ca2843d 34a512f ca2843d 34a512f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import gradio as gr
import torch
import time
from fastai.vision.all import load_learner
from fastai.vision.all import *
from PIL import Image
from pathlib import Path
import pathlib
import PIL
# Load the exported model
model = load_learner("model.pkl")
# Function to classify an image
def classify_images(imgs):
[print(x) for x in imgs]
start_time = time.time()
results = []
for img in imgs:
# Convert gradio image to PIL Image
#img = PILImage.create(img)
# Perform inference
pred_class, pred_idx, pred_probs = model.predict(img)
# Format output
output = f"Image Name: {Path(img).stem} - Category: {pred_class}"
results.append(output)
# Calculate total inference time
inference_time = time.time() - start_time
# Append total inference time to results
results.append(f"Total Inference Time: {inference_time:.2f} seconds")
return results
# Create Gradio interface
input_component = gr.File(label="Upload Image", file_count='multiple')
output_component = gr.Textbox(label="Classification Results")
interface = gr.Interface(fn=classify_images, inputs=input_component, outputs=output_component, title="Image Classifier")
# Launch the Gradio interface
interface.launch()
|