Spaces:
Running
Running
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
from newspaper import Article | |
# Model and tokenizer | |
model_name = "mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
# Setting the page title | |
st.title("Financial News Sentiment Analysis") | |
# Input option: Text or URL | |
input_option = st.radio("Choose input type:", ["Text Input", "URL Input"]) | |
if input_option == "Text Input": | |
text_input = st.text_area("Enter Financial News:", "DEMO : Tesla stock is soaring after record-breaking earnings.") | |
else: | |
url_input = st.text_input("Enter URL to scrape headline:") | |
if url_input: | |
try: | |
# Scrape the headline from the URL | |
article = Article(url_input) | |
article.download() | |
article.parse() | |
text_input = article.title # Use the article's title as the headline | |
st.success(f"Scraped Headline: {text_input}") | |
except Exception as e: | |
st.error(f"Failed to extract headline: {e}") | |
text_input = "" | |
# Function to perform sentiment analysis | |
def predict_sentiment(text): | |
inputs = tokenizer(text, return_tensors="pt", max_length=512, truncation=True) | |
outputs = model(**inputs) | |
sentiment_class = outputs.logits.argmax(dim=1).item() | |
sentiment_mapping = {0: 'Negative', 1: 'Neutral', 2: 'Positive'} | |
predicted_sentiment = sentiment_mapping.get(sentiment_class, 'Unknown') | |
return predicted_sentiment, outputs.logits.softmax(dim=1)[0].tolist() | |
# Button to trigger sentiment analysis | |
if st.button("Analyze Sentiment"): | |
# Checking if the input text is not empty | |
if text_input and text_input.strip(): | |
# Showing loading spinner while processing | |
with st.spinner("Analyzing sentiment..."): | |
sentiment, confidence_scores = predict_sentiment(text_input) | |
# Considering a threshold for sentiment prediction | |
threshold = 0.5 | |
# Changing the success message background color based on sentiment and threshold | |
if sentiment == 'Positive' and confidence_scores[2] > threshold: | |
st.success(f"Sentiment: {sentiment} (Confidence: {confidence_scores[2]:.3f})") | |
elif sentiment == 'Negative' and confidence_scores[0] > threshold: | |
st.error(f"Sentiment: {sentiment} (Confidence: {confidence_scores[0]:.3f})") | |
elif sentiment == 'Neutral' and confidence_scores[1] > threshold: | |
st.info(f"Sentiment: {sentiment} (Confidence: {confidence_scores[1]:.3f})") | |
else: | |
st.warning("Low confidence, or sentiment not above threshold. Please try again.") | |
else: | |
st.warning("Please enter some valid text for sentiment analysis.") | |
# Optional: Displaying the raw sentiment scores | |
if st.checkbox("Show Raw Sentiment Scores"): | |
if text_input and text_input.strip(): | |
_, raw_scores = predict_sentiment(text_input) | |
st.info(f"Raw Sentiment Scores: \n Negative : {raw_scores[0]} \n Positive : {raw_scores[2]} \n Neutral : {raw_scores[1]}") | |
# footer | |
st.markdown( | |
""" | |
** Built and maintained by Swayam Mohanty ** | |
""" | |
) | |