pop2piano / app.py
sweetcocoa's picture
update libs
5332e66
raw
history blame
6.68 kB
import binascii
import os
import gradio as gr
import librosa
import numpy as np
import pretty_midi
import torch
import yt_dlp
from transformers import Pop2PianoForConditionalGeneration, Pop2PianoProcessor
from utils import cli_to_api, mp3_write, normalize
yt_video_dir = "./yt_dir"
outputs_dir = "./midi_wav_outputs"
os.makedirs(outputs_dir, exist_ok=True)
os.makedirs(yt_video_dir, exist_ok=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano").to(device)
processor = Pop2PianoProcessor.from_pretrained("sweetcocoa/pop2piano")
composers = model.generation_config.composer_to_feature_token.keys()
def get_audio_from_yt_video(yt_link: str):
filename = binascii.hexlify(os.urandom(8)).decode() + ".mp3"
filename = os.path.join(yt_video_dir, filename)
yt_opt = cli_to_api(
[
"--extract-audio",
"--audio-format",
"mp3",
"--restrict-filenames",
"-o",
filename,
]
)
with yt_dlp.YoutubeDL(yt_opt) as ydl:
ydl.download([yt_link])
return filename, filename
def inference(file_uploaded, composer):
# to save the native sampling rate of the file, sr=None is used, but this can cause some silent errors where the
# generated output will not be upto the desired quality. If that happens please consider switching sr to 44100 Hz.
pop_y, sr = librosa.load(file_uploaded, sr=None)
inputs = processor(audio=pop_y, sampling_rate=sr, return_tensors="pt").to(device)
model_output = model.generate(input_features=inputs["input_features"], composer=composer)
tokenizer_output = processor.batch_decode(
token_ids=model_output.to("cpu"), feature_extractor_output=inputs.to("cpu")
)["pretty_midi_objects"]
return prepare_output_file(tokenizer_output, sr, pop_y)
def prepare_output_file(tokenizer_output: pretty_midi.PrettyMIDI, sr: int, pop_y: np.ndarray):
# Add some random values so that no two file names are same
output_file_name = "p2p_" + binascii.hexlify(os.urandom(8)).decode()
midi_output = os.path.join(outputs_dir, output_file_name + ".mid")
# write the .mid and its wav files
tokenizer_output[0].write(midi_output)
midi_y: np.ndarray = tokenizer_output[0].fluidsynth(sr)
midi_y_path: str = midi_output.replace(".mid", ".mp3")
mp3_write(midi_y_path, sr, normalize(midi_y), normalized=True)
# stack stereo audio
if len(pop_y) > len(midi_y):
midi_y = np.pad(midi_y, (0, len(pop_y) - len(midi_y)))
elif len(pop_y) < len(midi_y):
pop_y = np.pad(pop_y, (0, -len(pop_y) + len(midi_y)))
stereo = np.stack((midi_y, pop_y * 0.5))
# write stereo audio
stereo_path = midi_output.replace(".mid", ".mix.mp3")
mp3_write(stereo_path, sr, normalize(stereo.T), normalized=True)
return midi_y_path, midi_y_path, midi_output, stereo_path, stereo_path
block = gr.Blocks()
with block:
gr.HTML(
"""
<div style="text-align: center; max-width: 400px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px;">
Pop2piano
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
A demo for Pop2Piano:Pop Audio-based Piano Cover Generation.<br>
Please select the composer(Arranger) and upload the pop audio or enter the YouTube link and then click Generate.
</p>
</div>
"""
)
with gr.Group():
with gr.Column():
with gr.Blocks() as audio_select:
with gr.Tab("Upload Audio"):
file_uploaded = gr.Audio(label="Upload an audio", type="filepath")
with gr.Tab("YouTube url"):
with gr.Row():
yt_link = gr.Textbox(
label="Enter YouTube Link of the Video", autofocus=True, lines=3
)
yt_btn = gr.Button("Download Audio from YouTube Link", size="lg")
yt_audio_path = gr.Audio(
label="Audio Extracted from the YouTube Video", interactive=False
)
yt_btn.click(
get_audio_from_yt_video,
inputs=[yt_link],
outputs=[yt_audio_path, file_uploaded],
)
with gr.Column():
composer = gr.Dropdown(label="Arranger", choices=composers, value="composer1")
generate_btn = gr.Button("Generate")
with gr.Group():
gr.HTML(
"""
<div> <h3> <center> Listen to the generated MIDI. </h3> </div>
"""
)
with gr.Row(equal_height=True):
stereo_mix1 = gr.Audio(label="Listen to the Stereo Mix")
wav_output1 = gr.Audio(label="Listen to the Generated MIDI")
with gr.Row():
stereo_mix2 = gr.File(label="Download the Stereo Mix (.mp3")
wav_output2 = gr.File(label="Download the Generated MIDI (.mp3)")
midi_output = gr.File(label="Download the Generated MIDI (.mid)")
generate_btn.click(
inference,
inputs=[file_uploaded, composer],
outputs=[wav_output1, wav_output2, midi_output, stereo_mix1, stereo_mix2],
)
with gr.Group():
gr.Examples(
[
["./examples/custom_song.mp3", "composer1"],
],
fn=inference,
inputs=[file_uploaded, composer],
outputs=[wav_output1, wav_output2, midi_output, stereo_mix1, stereo_mix2],
cache_examples=True,
)
gr.HTML(
"""
<div class="footer">
<center><p><a href="http://sweetcocoa.github.io/pop2piano_samples" style="text-decoration: underline;" target="_blank">Project Page</a>
<center><a href="https://huggingface.co/docs/transformers/main/model_doc/pop2piano" style="text-decoration: underline;" target="_blank">HuggingFace Model Docs</a>
<center><a href="https://github.com/sweetcocoa/pop2piano" style="text-decoration: underline;" target="_blank">Github</a>
</p>
</div>
"""
)
block.launch(debug=False)