File size: 9,815 Bytes
b888bcf
6a4b741
 
 
5715833
6a4b741
 
 
b888bcf
6a4b741
b888bcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a4b741
 
5715833
b888bcf
 
 
 
b626f76
6a4b741
 
 
 
f1f7ebd
75a89e7
6a4b741
 
 
 
b888bcf
5715833
 
 
8fe2fce
5715833
3b46a5d
834c4bb
5715833
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ac5b77
 
5715833
 
 
 
 
 
 
 
834c4bb
5715833
 
 
24d15b9
5715833
 
 
 
 
 
8fe2fce
 
 
 
834c4bb
b626f76
8fe2fce
 
 
 
5715833
 
 
8fe2fce
6a4b741
 
 
 
b888bcf
 
6a4b741
46b8e8d
6a4b741
 
 
b888bcf
6a4b741
834c4bb
6a4b741
 
 
 
834c4bb
6a4b741
834c4bb
5715833
6a4b741
b888bcf
 
 
 
 
 
 
41a4356
 
 
6a4b741
b888bcf
6a4b741
b888bcf
 
5715833
 
b888bcf
 
 
 
6a4b741
5715833
b888bcf
 
5715833
 
 
 
 
 
6a4b741
b888bcf
 
 
 
 
 
4c97d5d
b888bcf
6a4b741
b888bcf
5715833
 
 
b888bcf
6a4b741
f0cf860
6a4b741
5715833
 
 
 
 
 
 
6a4b741
 
5715833
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b888bcf
 
24d15b9
b888bcf
 
 
 
8fe2fce
 
 
 
 
5715833
 
 
b888bcf
 
8fe2fce
 
 
 
 
5715833
 
 
b888bcf
5715833
b888bcf
8fe2fce
b888bcf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import gradio as gr
import torch
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
from huggingface_hub import hf_hub_download
from share_btn import community_icon_html, loading_icon_html, share_js
import lora
from time import sleep
import copy
import json

with open("sdxl_loras.json", "r") as file:
    sdxl_loras = [
        (
            item["image"],
            item["title"],
            item["repo"],
            item["trigger_word"],
            item["weights"],
            item["is_compatible"],
        )
        for item in json.load(file)
    ]

saved_names = [
    hf_hub_download(repo_id, filename) for _, _, repo_id, _, filename, _ in sdxl_loras
]

device = "cuda"  # replace this to `mps` if on a MacOS Silicon

vae = AutoencoderKL.from_pretrained(
    "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
)
pipe = StableDiffusionXLPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    vae=vae,
    torch_dtype=torch.float16,
).to("cpu")
original_pipe = copy.deepcopy(pipe)
pipe.to(device)

last_lora = ""
last_merged = False


def update_selection(selected_state: gr.SelectData):
    lora_repo = sdxl_loras[selected_state.index][2]
    instance_prompt = sdxl_loras[selected_state.index][3]
    new_placeholder = "Type a prompt! This style works for all prompts without a trigger word" if instance_prompt == "" else "Type a prompt to use your selected LoRA"
    weight_name = sdxl_loras[selected_state.index][4]
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
    use_with_diffusers = f'''
                    ## Using [`{lora_repo}`](https://huggingface.co/{lora_repo})
                    
                    ## Use it with diffusers: 

                    ```python
                    from diffusers import StableDiffusionXLPipeline
                    import torch

                    model_path = "stabilityai/stable-diffusion-xl-base-1.0"
                    pipe = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float16)
                    pipe.to("cuda")
                    pipe.load_lora_weights("{lora_repo}", weight_name={weight_name})
                        

                    prompt = "{instance_prompt}..." 
                    lora_weight = 0.5
                    image = pipe(prompt, num_inference_steps=30, guidance_scale=7.5, cross_attention_kwargs={{"scale":lora_weight}}).images[0]
                    image.save("image.png")
                    ```
                    '''
    use_with_uis = f'''
    ## Use it with Comfy UI, Invoke AI, SD.Next, AUTO1111: 

    ### Download the `*.safetensors` weights of [here](https://huggingface.co/{lora_repo}/resolve/main/{weight_name})
    
    - [ComfyUI guide](https://comfyanonymous.github.io/ComfyUI_examples/lora/)
    - [Invoke AI guide](https://invoke-ai.github.io/InvokeAI/features/CONCEPTS/?h=lora#using-loras)
    - [SD.Next guide](https://github.com/vladmandic/automatic)
    - [AUTOMATIC1111 guide](https://stable-diffusion-art.com/lora/)
    '''
    return (
        updated_text,
        instance_prompt,
        gr.update(placeholder=new_placeholder),
        selected_state,
        use_with_diffusers,
        use_with_uis,
    )


def check_selected(selected_state):
    if not selected_state:
        raise gr.Error("You must select a LoRA")

def run_lora(prompt, negative, lora_scale, selected_state):
    global last_lora, last_merged, pipe
    
    if not selected_state:
        raise gr.Error("You must select a LoRA")
        
    if negative == "":
        negative = None

    
    repo_name = sdxl_loras[selected_state.index][2]
    weight_name = sdxl_loras[selected_state.index][4]
    full_path_lora = saved_names[selected_state.index]
    cross_attention_kwargs = None
    if last_lora != repo_name:
        if last_merged:
            pipe = copy.deepcopy(original_pipe)
            pipe.to(device)
        else:
            pipe.unload_lora_weights()
        is_compatible = sdxl_loras[selected_state.index][5]
        if is_compatible:
            pipe.load_lora_weights(full_path_lora)
            cross_attention_kwargs = {"scale": lora_scale}
        else:
            for weights_file in [full_path_lora]:
                if ";" in weights_file:
                    weights_file, multiplier = weights_file.split(";")
                    multiplier = float(multiplier)
                else:
                    multiplier = lora_scale

                lora_model, weights_sd = lora.create_network_from_weights(
                    multiplier,
                    full_path_lora,
                    pipe.vae,
                    pipe.text_encoder,
                    pipe.unet,
                    for_inference=True,
                )
                lora_model.merge_to(
                    pipe.text_encoder, pipe.unet, weights_sd, torch.float16, "cuda"
                )
            last_merged = True

    image = pipe(
        prompt=prompt,
        negative_prompt=negative,
        width=768,
        height=768,
        num_inference_steps=20,
        guidance_scale=7.5,
        cross_attention_kwargs=cross_attention_kwargs,
    ).images[0]
    last_lora = repo_name
    return image, gr.update(visible=True)


with gr.Blocks(css="custom.css") as demo:
    title = gr.HTML(
        """<h1><img src="https://i.imgur.com/vT48NAO.png" alt="LoRA"> LoRA the Explorer</h1>""",
        elem_id="title",
    )
    selected_state = gr.State()
    with gr.Row():
        gallery = gr.Gallery(
            value=[(a, b) for a, b, _, _, _, _ in sdxl_loras],
            label="SDXL LoRA Gallery",
            allow_preview=False,
            columns=3,
            elem_id="gallery",
            show_share_button=False
        )
        with gr.Column():
            prompt_title = gr.Markdown(
                value="### Click on a LoRA in the gallery to select it",
                visible=True,
                elem_id="selected_lora",
            )
            with gr.Row():
                prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, placeholder="Type a prompt after selecting a LoRA", elem_id="prompt")
                button = gr.Button("Run", elem_id="run_button")
            result = gr.Image(
                interactive=False, label="Generated Image", elem_id="result-image"
            )
            with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
                community_icon = gr.HTML(community_icon_html)
                loading_icon = gr.HTML(loading_icon_html)
                share_button = gr.Button("Share to community", elem_id="share-btn")
            with gr.Accordion("Advanced options", open=False):
                negative = gr.Textbox(label="Negative Prompt")
                weight = gr.Slider(0, 10, value=1, step=0.1, label="LoRA weight")

    with gr.Column(elem_id="extra_info"):
        with gr.Accordion(
            "Use it with: 🧨  diffusers, ComfyUI, Invoke AI, SD.Next, AUTO1111",
            open=False,
            elem_id="accordion",
        ):
            with gr.Row():
                use_diffusers = gr.Markdown("""## Select a LoRA first 🤗""")
                use_uis = gr.Markdown()
        with gr.Accordion("Submit a LoRA! 📥", open=False):
            submit_title = gr.Markdown(
                "### Streamlined submission coming soon! Until then [suggest your LoRA in the community tab](https://huggingface.co/spaces/multimodalart/LoraTheExplorer/discussions) 🤗"
            )
            with gr.Box(elem_id="soon"):
                submit_source = gr.Radio(
                    ["Hugging Face", "CivitAI"],
                    label="LoRA source",
                    value="Hugging Face",
                )
                with gr.Row():
                    submit_source_hf = gr.Textbox(
                        label="Hugging Face Model Repo",
                        info="In the format `username/model_id`",
                    )
                    submit_safetensors_hf = gr.Textbox(
                        label="Safetensors filename",
                        info="The filename `*.safetensors` in the model repo",
                    )
                with gr.Row():
                    submit_trigger_word_hf = gr.Textbox(label="Trigger word")
                    submit_image = gr.Image(
                        label="Example image (optional if the repo already contains images)"
                    )
                submit_button = gr.Button("Submit!")
                submit_disclaimer = gr.Markdown(
                    "This is a curated gallery by me, [apolinário (multimodal.art)](https://twitter.com/multimodalart). I'll try to include as many cool LoRAs as they are submitted! You can [duplicate this Space](https://huggingface.co/spaces/multimodalart/LoraTheExplorer?duplicate=true) to use it privately, and add your own LoRAs by editing `sdxl_loras.json` in the Files tab of your private space."
                )

    gallery.select(
        update_selection,
        outputs=[prompt_title, prompt, prompt, selected_state, use_diffusers, use_uis],
        queue=False,
        show_progress=False,
    )
    prompt.submit(
        fn=check_selected,
        inputs=[selected_state],
        queue=False,
        show_progress=False
    ).then(
        fn=run_lora,
        inputs=[prompt, negative, weight, selected_state],
        outputs=[result, share_group],
    )
    button.click(
        fn=check_selected,
        inputs=[selected_state],
        queue=False,
        show_progress=False
    ).then(
        fn=run_lora,
        inputs=[prompt, negative, weight, selected_state],
        outputs=[result, share_group],
    )
    share_button.click(None, [], [], _js=share_js)

demo.queue(max_size=20)
demo.launch()