swoyam-sarvam commited on
Commit
2a0517c
·
1 Parent(s): 4c1d1b8

initial commit

Browse files
app.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from control import main
3
+ from diffusers.utils import load_image
4
+
5
+
6
+ def process_images(image, mask, prompt):
7
+ try:
8
+ # Pass images directly to main function
9
+ result = main(image, mask, prompt)
10
+ return result
11
+ except Exception as e:
12
+ return str(e)
13
+
14
+
15
+ # Create Gradio interface
16
+ demo = gr.Interface(
17
+ fn=process_images,
18
+ inputs=[
19
+ gr.Image(label="Input Image", type="pil"),
20
+ gr.Image(label="Mask Image", type="pil"),
21
+ gr.Textbox(label="Prompt"),
22
+ ],
23
+ outputs=gr.Image(label="Generated Image"),
24
+ title="Image Inpainting with FLUX ControlNet",
25
+ description="Upload an image and its mask, then provide a prompt to generate the inpainted result.",
26
+ )
27
+
28
+ if __name__ == "__main__":
29
+ demo.launch()
control.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import argparse
3
+ from diffusers.utils import load_image, check_min_version
4
+ from controlnet_flux import FluxControlNetModel
5
+ from transformer_flux import FluxTransformer2DModel
6
+ from pipeline_flux_controlnet_inpaint import FluxControlNetInpaintingPipeline
7
+
8
+
9
+ def main(image, mask, prompt):
10
+ check_min_version("0.30.2")
11
+
12
+ # Enable memory optimizations
13
+ torch.backends.cuda.matmul.allow_tf32 = True
14
+ torch.backends.cudnn.allow_tf32 = True
15
+ torch.cuda.empty_cache()
16
+ torch.backends.cudnn.benchmark = True
17
+
18
+ # Set environment variable for memory allocation
19
+ import os
20
+ os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"
21
+
22
+ # Build pipeline components
23
+ controlnet = FluxControlNetModel.from_pretrained(
24
+ "alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha",
25
+ torch_dtype=torch.bfloat16,
26
+ ).to("cuda")
27
+
28
+ transformer = FluxTransformer2DModel.from_pretrained(
29
+ "black-forest-labs/FLUX.1-dev",
30
+ subfolder="transformer",
31
+ torch_dtype=torch.bfloat16,
32
+ ).to("cuda")
33
+
34
+ pipe = FluxControlNetInpaintingPipeline.from_pretrained(
35
+ "black-forest-labs/FLUX.1-dev",
36
+ controlnet=controlnet,
37
+ transformer=transformer,
38
+ torch_dtype=torch.bfloat16,
39
+ ).to("cuda")
40
+
41
+ # Enable memory efficient attention
42
+ pipe.enable_attention_slicing(1)
43
+
44
+ # Load and process images
45
+ size = (384, 384) # or even (256, 256)
46
+ image = image.convert("RGB").resize(size)
47
+ mask = mask.convert("RGB").resize(size)
48
+
49
+ # Set generator
50
+ generator = torch.Generator(device="cuda").manual_seed(24)
51
+
52
+ # Run inference with memory optimizations
53
+ with torch.cuda.amp.autocast(): # Enable automatic mixed precision
54
+ result = pipe(
55
+ prompt=prompt,
56
+ height=size[1],
57
+ width=size[0],
58
+ control_image=image,
59
+ control_mask=mask,
60
+ num_inference_steps=28,
61
+ generator=generator,
62
+ controlnet_conditioning_scale=0.9,
63
+ guidance_scale=3.5,
64
+ negative_prompt="",
65
+ true_guidance_scale=1.0,
66
+ ).images[0]
67
+
68
+ # Clear cache after generation
69
+ torch.cuda.empty_cache()
70
+
71
+ print("Successfully inpaint image")
72
+ return result
73
+
74
+
75
+ if __name__ == "__main__":
76
+ parser = argparse.ArgumentParser(
77
+ description="Inpaint an image using FluxControlNetInpaintingPipeline."
78
+ )
79
+ parser.add_argument(
80
+ "--image_path", type=str, required=True, help="Path to the input image."
81
+ )
82
+ parser.add_argument(
83
+ "--mask_path", type=str, required=True, help="Path to the mask image."
84
+ )
85
+ parser.add_argument(
86
+ "--prompt", type=str, required=True, help="Prompt for the inpainting process."
87
+ )
88
+
89
+ args = parser.parse_args()
90
+ result = main(args.image_path, args.mask_path, args.prompt)
91
+ result.save("output.png")
controlnet_flux.py ADDED
@@ -0,0 +1,418 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ from typing import Any, Dict, List, Optional, Tuple, Union
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+
7
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
8
+ from diffusers.loaders import PeftAdapterMixin
9
+ from diffusers.models.modeling_utils import ModelMixin
10
+ from diffusers.models.attention_processor import AttentionProcessor
11
+ from diffusers.utils import (
12
+ USE_PEFT_BACKEND,
13
+ is_torch_version,
14
+ logging,
15
+ scale_lora_layers,
16
+ unscale_lora_layers,
17
+ )
18
+ from diffusers.models.controlnet import BaseOutput, zero_module
19
+ from diffusers.models.embeddings import (
20
+ CombinedTimestepGuidanceTextProjEmbeddings,
21
+ CombinedTimestepTextProjEmbeddings,
22
+ )
23
+ from diffusers.models.modeling_outputs import Transformer2DModelOutput
24
+ from transformer_flux import (
25
+ EmbedND,
26
+ FluxSingleTransformerBlock,
27
+ FluxTransformerBlock,
28
+ )
29
+
30
+
31
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
32
+
33
+
34
+ @dataclass
35
+ class FluxControlNetOutput(BaseOutput):
36
+ controlnet_block_samples: Tuple[torch.Tensor]
37
+ controlnet_single_block_samples: Tuple[torch.Tensor]
38
+
39
+
40
+ class FluxControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
41
+ _supports_gradient_checkpointing = True
42
+
43
+ @register_to_config
44
+ def __init__(
45
+ self,
46
+ patch_size: int = 1,
47
+ in_channels: int = 64,
48
+ num_layers: int = 19,
49
+ num_single_layers: int = 38,
50
+ attention_head_dim: int = 128,
51
+ num_attention_heads: int = 24,
52
+ joint_attention_dim: int = 4096,
53
+ pooled_projection_dim: int = 768,
54
+ guidance_embeds: bool = False,
55
+ axes_dims_rope: List[int] = [16, 56, 56],
56
+ extra_condition_channels: int = 1 * 4,
57
+ ):
58
+ super().__init__()
59
+ self.out_channels = in_channels
60
+ self.inner_dim = num_attention_heads * attention_head_dim
61
+
62
+ self.pos_embed = EmbedND(
63
+ dim=self.inner_dim, theta=10000, axes_dim=axes_dims_rope
64
+ )
65
+ text_time_guidance_cls = (
66
+ CombinedTimestepGuidanceTextProjEmbeddings
67
+ if guidance_embeds
68
+ else CombinedTimestepTextProjEmbeddings
69
+ )
70
+ self.time_text_embed = text_time_guidance_cls(
71
+ embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
72
+ )
73
+
74
+ self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
75
+ self.x_embedder = nn.Linear(in_channels, self.inner_dim)
76
+
77
+ self.transformer_blocks = nn.ModuleList(
78
+ [
79
+ FluxTransformerBlock(
80
+ dim=self.inner_dim,
81
+ num_attention_heads=num_attention_heads,
82
+ attention_head_dim=attention_head_dim,
83
+ )
84
+ for _ in range(num_layers)
85
+ ]
86
+ )
87
+
88
+ self.single_transformer_blocks = nn.ModuleList(
89
+ [
90
+ FluxSingleTransformerBlock(
91
+ dim=self.inner_dim,
92
+ num_attention_heads=num_attention_heads,
93
+ attention_head_dim=attention_head_dim,
94
+ )
95
+ for _ in range(num_single_layers)
96
+ ]
97
+ )
98
+
99
+ # controlnet_blocks
100
+ self.controlnet_blocks = nn.ModuleList([])
101
+ for _ in range(len(self.transformer_blocks)):
102
+ self.controlnet_blocks.append(
103
+ zero_module(nn.Linear(self.inner_dim, self.inner_dim))
104
+ )
105
+
106
+ self.controlnet_single_blocks = nn.ModuleList([])
107
+ for _ in range(len(self.single_transformer_blocks)):
108
+ self.controlnet_single_blocks.append(
109
+ zero_module(nn.Linear(self.inner_dim, self.inner_dim))
110
+ )
111
+
112
+ self.controlnet_x_embedder = zero_module(
113
+ torch.nn.Linear(in_channels + extra_condition_channels, self.inner_dim)
114
+ )
115
+
116
+ self.gradient_checkpointing = False
117
+
118
+ @property
119
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
120
+ def attn_processors(self):
121
+ r"""
122
+ Returns:
123
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
124
+ indexed by its weight name.
125
+ """
126
+ # set recursively
127
+ processors = {}
128
+
129
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
130
+ if hasattr(module, "get_processor"):
131
+ processors[f"{name}.processor"] = module.get_processor()
132
+
133
+ for sub_name, child in module.named_children():
134
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
135
+
136
+ return processors
137
+
138
+ for name, module in self.named_children():
139
+ fn_recursive_add_processors(name, module, processors)
140
+
141
+ return processors
142
+
143
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
144
+ def set_attn_processor(self, processor):
145
+ r"""
146
+ Sets the attention processor to use to compute attention.
147
+
148
+ Parameters:
149
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
150
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
151
+ for **all** `Attention` layers.
152
+
153
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
154
+ processor. This is strongly recommended when setting trainable attention processors.
155
+
156
+ """
157
+ count = len(self.attn_processors.keys())
158
+
159
+ if isinstance(processor, dict) and len(processor) != count:
160
+ raise ValueError(
161
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
162
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
163
+ )
164
+
165
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
166
+ if hasattr(module, "set_processor"):
167
+ if not isinstance(processor, dict):
168
+ module.set_processor(processor)
169
+ else:
170
+ module.set_processor(processor.pop(f"{name}.processor"))
171
+
172
+ for sub_name, child in module.named_children():
173
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
174
+
175
+ for name, module in self.named_children():
176
+ fn_recursive_attn_processor(name, module, processor)
177
+
178
+ def _set_gradient_checkpointing(self, module, value=False):
179
+ if hasattr(module, "gradient_checkpointing"):
180
+ module.gradient_checkpointing = value
181
+
182
+ @classmethod
183
+ def from_transformer(
184
+ cls,
185
+ transformer,
186
+ num_layers: int = 4,
187
+ num_single_layers: int = 10,
188
+ attention_head_dim: int = 128,
189
+ num_attention_heads: int = 24,
190
+ load_weights_from_transformer=True,
191
+ ):
192
+ config = transformer.config
193
+ config["num_layers"] = num_layers
194
+ config["num_single_layers"] = num_single_layers
195
+ config["attention_head_dim"] = attention_head_dim
196
+ config["num_attention_heads"] = num_attention_heads
197
+
198
+ controlnet = cls(**config)
199
+
200
+ if load_weights_from_transformer:
201
+ controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict())
202
+ controlnet.time_text_embed.load_state_dict(
203
+ transformer.time_text_embed.state_dict()
204
+ )
205
+ controlnet.context_embedder.load_state_dict(
206
+ transformer.context_embedder.state_dict()
207
+ )
208
+ controlnet.x_embedder.load_state_dict(transformer.x_embedder.state_dict())
209
+ controlnet.transformer_blocks.load_state_dict(
210
+ transformer.transformer_blocks.state_dict(), strict=False
211
+ )
212
+ controlnet.single_transformer_blocks.load_state_dict(
213
+ transformer.single_transformer_blocks.state_dict(), strict=False
214
+ )
215
+
216
+ controlnet.controlnet_x_embedder = zero_module(
217
+ controlnet.controlnet_x_embedder
218
+ )
219
+
220
+ return controlnet
221
+
222
+ def forward(
223
+ self,
224
+ hidden_states: torch.Tensor,
225
+ controlnet_cond: torch.Tensor,
226
+ conditioning_scale: float = 1.0,
227
+ encoder_hidden_states: torch.Tensor = None,
228
+ pooled_projections: torch.Tensor = None,
229
+ timestep: torch.LongTensor = None,
230
+ img_ids: torch.Tensor = None,
231
+ txt_ids: torch.Tensor = None,
232
+ guidance: torch.Tensor = None,
233
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
234
+ return_dict: bool = True,
235
+ ) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
236
+ """
237
+ The [`FluxTransformer2DModel`] forward method.
238
+
239
+ Args:
240
+ hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
241
+ Input `hidden_states`.
242
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
243
+ Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
244
+ pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
245
+ from the embeddings of input conditions.
246
+ timestep ( `torch.LongTensor`):
247
+ Used to indicate denoising step.
248
+ block_controlnet_hidden_states: (`list` of `torch.Tensor`):
249
+ A list of tensors that if specified are added to the residuals of transformer blocks.
250
+ joint_attention_kwargs (`dict`, *optional*):
251
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
252
+ `self.processor` in
253
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
254
+ return_dict (`bool`, *optional*, defaults to `True`):
255
+ Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
256
+ tuple.
257
+
258
+ Returns:
259
+ If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
260
+ `tuple` where the first element is the sample tensor.
261
+ """
262
+ if joint_attention_kwargs is not None:
263
+ joint_attention_kwargs = joint_attention_kwargs.copy()
264
+ lora_scale = joint_attention_kwargs.pop("scale", 1.0)
265
+ else:
266
+ lora_scale = 1.0
267
+
268
+ if USE_PEFT_BACKEND:
269
+ # weight the lora layers by setting `lora_scale` for each PEFT layer
270
+ scale_lora_layers(self, lora_scale)
271
+ else:
272
+ if (
273
+ joint_attention_kwargs is not None
274
+ and joint_attention_kwargs.get("scale", None) is not None
275
+ ):
276
+ logger.warning(
277
+ "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
278
+ )
279
+ hidden_states = self.x_embedder(hidden_states)
280
+
281
+ # add condition
282
+ hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond)
283
+
284
+ timestep = timestep.to(hidden_states.dtype) * 1000
285
+ if guidance is not None:
286
+ guidance = guidance.to(hidden_states.dtype) * 1000
287
+ else:
288
+ guidance = None
289
+ temb = (
290
+ self.time_text_embed(timestep, pooled_projections)
291
+ if guidance is None
292
+ else self.time_text_embed(timestep, guidance, pooled_projections)
293
+ )
294
+ encoder_hidden_states = self.context_embedder(encoder_hidden_states)
295
+
296
+ txt_ids = txt_ids.expand(img_ids.size(0), -1, -1)
297
+ ids = torch.cat((txt_ids, img_ids), dim=1)
298
+ image_rotary_emb = self.pos_embed(ids)
299
+
300
+ block_samples = ()
301
+ for _, block in enumerate(self.transformer_blocks):
302
+ if self.training and self.gradient_checkpointing:
303
+
304
+ def create_custom_forward(module, return_dict=None):
305
+ def custom_forward(*inputs):
306
+ if return_dict is not None:
307
+ return module(*inputs, return_dict=return_dict)
308
+ else:
309
+ return module(*inputs)
310
+
311
+ return custom_forward
312
+
313
+ ckpt_kwargs: Dict[str, Any] = (
314
+ {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
315
+ )
316
+ (
317
+ encoder_hidden_states,
318
+ hidden_states,
319
+ ) = torch.utils.checkpoint.checkpoint(
320
+ create_custom_forward(block),
321
+ hidden_states,
322
+ encoder_hidden_states,
323
+ temb,
324
+ image_rotary_emb,
325
+ **ckpt_kwargs,
326
+ )
327
+
328
+ else:
329
+ encoder_hidden_states, hidden_states = block(
330
+ hidden_states=hidden_states,
331
+ encoder_hidden_states=encoder_hidden_states,
332
+ temb=temb,
333
+ image_rotary_emb=image_rotary_emb,
334
+ )
335
+ block_samples = block_samples + (hidden_states,)
336
+
337
+ hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
338
+
339
+ single_block_samples = ()
340
+ for _, block in enumerate(self.single_transformer_blocks):
341
+ if self.training and self.gradient_checkpointing:
342
+
343
+ def create_custom_forward(module, return_dict=None):
344
+ def custom_forward(*inputs):
345
+ if return_dict is not None:
346
+ return module(*inputs, return_dict=return_dict)
347
+ else:
348
+ return module(*inputs)
349
+
350
+ return custom_forward
351
+
352
+ ckpt_kwargs: Dict[str, Any] = (
353
+ {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
354
+ )
355
+ hidden_states = torch.utils.checkpoint.checkpoint(
356
+ create_custom_forward(block),
357
+ hidden_states,
358
+ temb,
359
+ image_rotary_emb,
360
+ **ckpt_kwargs,
361
+ )
362
+
363
+ else:
364
+ hidden_states = block(
365
+ hidden_states=hidden_states,
366
+ temb=temb,
367
+ image_rotary_emb=image_rotary_emb,
368
+ )
369
+ single_block_samples = single_block_samples + (
370
+ hidden_states[:, encoder_hidden_states.shape[1] :],
371
+ )
372
+
373
+ # controlnet block
374
+ controlnet_block_samples = ()
375
+ for block_sample, controlnet_block in zip(
376
+ block_samples, self.controlnet_blocks
377
+ ):
378
+ block_sample = controlnet_block(block_sample)
379
+ controlnet_block_samples = controlnet_block_samples + (block_sample,)
380
+
381
+ controlnet_single_block_samples = ()
382
+ for single_block_sample, controlnet_block in zip(
383
+ single_block_samples, self.controlnet_single_blocks
384
+ ):
385
+ single_block_sample = controlnet_block(single_block_sample)
386
+ controlnet_single_block_samples = controlnet_single_block_samples + (
387
+ single_block_sample,
388
+ )
389
+
390
+ # scaling
391
+ controlnet_block_samples = [
392
+ sample * conditioning_scale for sample in controlnet_block_samples
393
+ ]
394
+ controlnet_single_block_samples = [
395
+ sample * conditioning_scale for sample in controlnet_single_block_samples
396
+ ]
397
+
398
+ #
399
+ controlnet_block_samples = (
400
+ None if len(controlnet_block_samples) == 0 else controlnet_block_samples
401
+ )
402
+ controlnet_single_block_samples = (
403
+ None
404
+ if len(controlnet_single_block_samples) == 0
405
+ else controlnet_single_block_samples
406
+ )
407
+
408
+ if USE_PEFT_BACKEND:
409
+ # remove `lora_scale` from each PEFT layer
410
+ unscale_lora_layers(self, lora_scale)
411
+
412
+ if not return_dict:
413
+ return (controlnet_block_samples, controlnet_single_block_samples)
414
+
415
+ return FluxControlNetOutput(
416
+ controlnet_block_samples=controlnet_block_samples,
417
+ controlnet_single_block_samples=controlnet_single_block_samples,
418
+ )
images/0.jpg ADDED
images/1.jpg ADDED
images/2.jpg ADDED
images/3.jpg ADDED
images/alibaba.png ADDED
images/alibabaalimama.png ADDED
images/alimama.png ADDED
images/flux1.jpg ADDED
images/flux2.jpg ADDED
images/flux3.jpg ADDED
pipeline_flux_controlnet_inpaint.py ADDED
@@ -0,0 +1,1066 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import inspect
2
+ from typing import Any, Callable, Dict, List, Optional, Union
3
+
4
+ import numpy as np
5
+ import torch
6
+ from transformers import (
7
+ CLIPTextModel,
8
+ CLIPTokenizer,
9
+ T5EncoderModel,
10
+ T5TokenizerFast,
11
+ )
12
+
13
+ from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
14
+ from diffusers.loaders import FluxLoraLoaderMixin
15
+ from diffusers.models.autoencoders import AutoencoderKL
16
+
17
+ from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
18
+ from diffusers.utils import (
19
+ USE_PEFT_BACKEND,
20
+ is_torch_xla_available,
21
+ logging,
22
+ replace_example_docstring,
23
+ scale_lora_layers,
24
+ unscale_lora_layers,
25
+ )
26
+ from diffusers.utils.torch_utils import randn_tensor
27
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
28
+ from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
29
+
30
+ from transformer_flux import FluxTransformer2DModel
31
+ from controlnet_flux import FluxControlNetModel
32
+
33
+ if is_torch_xla_available():
34
+ import torch_xla.core.xla_model as xm
35
+
36
+ XLA_AVAILABLE = True
37
+ else:
38
+ XLA_AVAILABLE = False
39
+
40
+
41
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
42
+
43
+ EXAMPLE_DOC_STRING = """
44
+ Examples:
45
+ ```py
46
+ >>> import torch
47
+ >>> from diffusers.utils import load_image
48
+ >>> from diffusers import FluxControlNetPipeline
49
+ >>> from diffusers import FluxControlNetModel
50
+
51
+ >>> controlnet_model = "InstantX/FLUX.1-dev-controlnet-canny-alpha"
52
+ >>> controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
53
+ >>> pipe = FluxControlNetPipeline.from_pretrained(
54
+ ... base_model, controlnet=controlnet, torch_dtype=torch.bfloat16
55
+ ... )
56
+ >>> pipe.to("cuda")
57
+ >>> control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")
58
+ >>> control_mask = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")
59
+ >>> prompt = "A girl in city, 25 years old, cool, futuristic"
60
+ >>> image = pipe(
61
+ ... prompt,
62
+ ... control_image=control_image,
63
+ ... controlnet_conditioning_scale=0.6,
64
+ ... num_inference_steps=28,
65
+ ... guidance_scale=3.5,
66
+ ... ).images[0]
67
+ >>> image.save("flux.png")
68
+ ```
69
+ """
70
+
71
+
72
+ # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
73
+ def calculate_shift(
74
+ image_seq_len,
75
+ base_seq_len: int = 256,
76
+ max_seq_len: int = 4096,
77
+ base_shift: float = 0.5,
78
+ max_shift: float = 1.16,
79
+ ):
80
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
81
+ b = base_shift - m * base_seq_len
82
+ mu = image_seq_len * m + b
83
+ return mu
84
+
85
+
86
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
87
+ def retrieve_timesteps(
88
+ scheduler,
89
+ num_inference_steps: Optional[int] = None,
90
+ device: Optional[Union[str, torch.device]] = None,
91
+ timesteps: Optional[List[int]] = None,
92
+ sigmas: Optional[List[float]] = None,
93
+ **kwargs,
94
+ ):
95
+ """
96
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
97
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
98
+
99
+ Args:
100
+ scheduler (`SchedulerMixin`):
101
+ The scheduler to get timesteps from.
102
+ num_inference_steps (`int`):
103
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
104
+ must be `None`.
105
+ device (`str` or `torch.device`, *optional*):
106
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
107
+ timesteps (`List[int]`, *optional*):
108
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
109
+ `num_inference_steps` and `sigmas` must be `None`.
110
+ sigmas (`List[float]`, *optional*):
111
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
112
+ `num_inference_steps` and `timesteps` must be `None`.
113
+
114
+ Returns:
115
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
116
+ second element is the number of inference steps.
117
+ """
118
+ if timesteps is not None and sigmas is not None:
119
+ raise ValueError(
120
+ "Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
121
+ )
122
+ if timesteps is not None:
123
+ accepts_timesteps = "timesteps" in set(
124
+ inspect.signature(scheduler.set_timesteps).parameters.keys()
125
+ )
126
+ if not accepts_timesteps:
127
+ raise ValueError(
128
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
129
+ f" timestep schedules. Please check whether you are using the correct scheduler."
130
+ )
131
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
132
+ timesteps = scheduler.timesteps
133
+ num_inference_steps = len(timesteps)
134
+ elif sigmas is not None:
135
+ accept_sigmas = "sigmas" in set(
136
+ inspect.signature(scheduler.set_timesteps).parameters.keys()
137
+ )
138
+ if not accept_sigmas:
139
+ raise ValueError(
140
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
141
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
142
+ )
143
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
144
+ timesteps = scheduler.timesteps
145
+ num_inference_steps = len(timesteps)
146
+ else:
147
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
148
+ timesteps = scheduler.timesteps
149
+ return timesteps, num_inference_steps
150
+
151
+
152
+ def move_to_device(tensor, device):
153
+ if isinstance(tensor, torch.Tensor):
154
+ return tensor.to(device)
155
+ return tensor
156
+
157
+
158
+ class FluxControlNetInpaintingPipeline(DiffusionPipeline, FluxLoraLoaderMixin):
159
+ r"""
160
+ The Flux pipeline for text-to-image generation.
161
+
162
+ Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
163
+
164
+ Args:
165
+ transformer ([`FluxTransformer2DModel`]):
166
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
167
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
168
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
169
+ vae ([`AutoencoderKL`]):
170
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
171
+ text_encoder ([`CLIPTextModel`]):
172
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
173
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
174
+ text_encoder_2 ([`T5EncoderModel`]):
175
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
176
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
177
+ tokenizer (`CLIPTokenizer`):
178
+ Tokenizer of class
179
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
180
+ tokenizer_2 (`T5TokenizerFast`):
181
+ Second Tokenizer of class
182
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
183
+ """
184
+
185
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
186
+ _optional_components = []
187
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
188
+
189
+ def __init__(
190
+ self,
191
+ scheduler: FlowMatchEulerDiscreteScheduler,
192
+ vae: AutoencoderKL,
193
+ text_encoder: CLIPTextModel,
194
+ tokenizer: CLIPTokenizer,
195
+ text_encoder_2: T5EncoderModel,
196
+ tokenizer_2: T5TokenizerFast,
197
+ transformer: FluxTransformer2DModel,
198
+ controlnet: FluxControlNetModel,
199
+ ):
200
+ super().__init__()
201
+
202
+ self.register_modules(
203
+ vae=vae,
204
+ text_encoder=text_encoder,
205
+ text_encoder_2=text_encoder_2,
206
+ tokenizer=tokenizer,
207
+ tokenizer_2=tokenizer_2,
208
+ transformer=transformer,
209
+ scheduler=scheduler,
210
+ controlnet=controlnet,
211
+ )
212
+ self.vae_scale_factor = (
213
+ 2 ** (len(self.vae.config.block_out_channels))
214
+ if hasattr(self, "vae") and self.vae is not None
215
+ else 16
216
+ )
217
+ self.image_processor = VaeImageProcessor(
218
+ vae_scale_factor=self.vae_scale_factor,
219
+ do_resize=True,
220
+ do_convert_rgb=True,
221
+ do_normalize=True,
222
+ )
223
+ self.mask_processor = VaeImageProcessor(
224
+ vae_scale_factor=self.vae_scale_factor,
225
+ do_resize=True,
226
+ do_convert_grayscale=True,
227
+ do_normalize=False,
228
+ do_binarize=True,
229
+ )
230
+ self.tokenizer_max_length = (
231
+ self.tokenizer.model_max_length
232
+ if hasattr(self, "tokenizer") and self.tokenizer is not None
233
+ else 77
234
+ )
235
+ self.default_sample_size = 64
236
+
237
+ @property
238
+ def do_classifier_free_guidance(self):
239
+ return self._guidance_scale > 1
240
+
241
+ def _get_t5_prompt_embeds(
242
+ self,
243
+ prompt: Union[str, List[str]] = None,
244
+ num_images_per_prompt: int = 1,
245
+ max_sequence_length: int = 512,
246
+ device: Optional[torch.device] = None,
247
+ dtype: Optional[torch.dtype] = None,
248
+ ):
249
+ device = device or self._execution_device
250
+ dtype = dtype or self.text_encoder.dtype
251
+
252
+ prompt = [prompt] if isinstance(prompt, str) else prompt
253
+ batch_size = len(prompt)
254
+
255
+ text_inputs = self.tokenizer_2(
256
+ prompt,
257
+ padding="max_length",
258
+ max_length=max_sequence_length,
259
+ truncation=True,
260
+ return_length=False,
261
+ return_overflowing_tokens=False,
262
+ return_tensors="pt",
263
+ )
264
+ text_input_ids = text_inputs.input_ids
265
+ untruncated_ids = self.tokenizer_2(
266
+ prompt, padding="longest", return_tensors="pt"
267
+ ).input_ids
268
+
269
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
270
+ text_input_ids, untruncated_ids
271
+ ):
272
+ removed_text = self.tokenizer_2.batch_decode(
273
+ untruncated_ids[:, self.tokenizer_max_length - 1 : -1]
274
+ )
275
+ logger.warning(
276
+ "The following part of your input was truncated because `max_sequence_length` is set to "
277
+ f" {max_sequence_length} tokens: {removed_text}"
278
+ )
279
+
280
+ prompt_embeds = self.text_encoder_2(
281
+ text_input_ids.to(device), output_hidden_states=False
282
+ )[0]
283
+
284
+ dtype = self.text_encoder_2.dtype
285
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
286
+
287
+ _, seq_len, _ = prompt_embeds.shape
288
+
289
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
290
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
291
+ prompt_embeds = prompt_embeds.view(
292
+ batch_size * num_images_per_prompt, seq_len, -1
293
+ )
294
+
295
+ return prompt_embeds
296
+
297
+ def _get_clip_prompt_embeds(
298
+ self,
299
+ prompt: Union[str, List[str]],
300
+ num_images_per_prompt: int = 1,
301
+ device: Optional[torch.device] = None,
302
+ ):
303
+ device = device or self._execution_device
304
+
305
+ prompt = [prompt] if isinstance(prompt, str) else prompt
306
+ batch_size = len(prompt)
307
+
308
+ text_inputs = self.tokenizer(
309
+ prompt,
310
+ padding="max_length",
311
+ max_length=self.tokenizer_max_length,
312
+ truncation=True,
313
+ return_overflowing_tokens=False,
314
+ return_length=False,
315
+ return_tensors="pt",
316
+ )
317
+
318
+ text_input_ids = text_inputs.input_ids
319
+ untruncated_ids = self.tokenizer(
320
+ prompt, padding="longest", return_tensors="pt"
321
+ ).input_ids
322
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
323
+ text_input_ids, untruncated_ids
324
+ ):
325
+ removed_text = self.tokenizer.batch_decode(
326
+ untruncated_ids[:, self.tokenizer_max_length - 1 : -1]
327
+ )
328
+ logger.warning(
329
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
330
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
331
+ )
332
+ prompt_embeds = self.text_encoder(
333
+ text_input_ids.to(device), output_hidden_states=False
334
+ )
335
+
336
+ # Use pooled output of CLIPTextModel
337
+ prompt_embeds = prompt_embeds.pooler_output
338
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
339
+
340
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
341
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
342
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
343
+
344
+ return prompt_embeds
345
+
346
+ def encode_prompt(
347
+ self,
348
+ prompt: Union[str, List[str]],
349
+ prompt_2: Union[str, List[str]],
350
+ device: Optional[torch.device] = None,
351
+ num_images_per_prompt: int = 1,
352
+ do_classifier_free_guidance: bool = True,
353
+ negative_prompt: Optional[Union[str, List[str]]] = None,
354
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
355
+ prompt_embeds: Optional[torch.FloatTensor] = None,
356
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
357
+ max_sequence_length: int = 512,
358
+ lora_scale: Optional[float] = None,
359
+ ):
360
+ r"""
361
+
362
+ Args:
363
+ prompt (`str` or `List[str]`, *optional*):
364
+ prompt to be encoded
365
+ prompt_2 (`str` or `List[str]`, *optional*):
366
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
367
+ used in all text-encoders
368
+ device: (`torch.device`):
369
+ torch device
370
+ num_images_per_prompt (`int`):
371
+ number of images that should be generated per prompt
372
+ do_classifier_free_guidance (`bool`):
373
+ whether to use classifier-free guidance or not
374
+ negative_prompt (`str` or `List[str]`, *optional*):
375
+ negative prompt to be encoded
376
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
377
+ negative prompt to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `negative_prompt` is
378
+ used in all text-encoders
379
+ prompt_embeds (`torch.FloatTensor`, *optional*):
380
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
381
+ provided, text embeddings will be generated from `prompt` input argument.
382
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
383
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
384
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
385
+ clip_skip (`int`, *optional*):
386
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
387
+ the output of the pre-final layer will be used for computing the prompt embeddings.
388
+ lora_scale (`float`, *optional*):
389
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
390
+ """
391
+ device = device or self._execution_device
392
+
393
+ # set lora scale so that monkey patched LoRA
394
+ # function of text encoder can correctly access it
395
+ if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
396
+ self._lora_scale = lora_scale
397
+
398
+ # dynamically adjust the LoRA scale
399
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
400
+ scale_lora_layers(self.text_encoder, lora_scale)
401
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
402
+ scale_lora_layers(self.text_encoder_2, lora_scale)
403
+
404
+ prompt = [prompt] if isinstance(prompt, str) else prompt
405
+ if prompt is not None:
406
+ batch_size = len(prompt)
407
+ else:
408
+ batch_size = prompt_embeds.shape[0]
409
+
410
+ if prompt_embeds is None:
411
+ prompt_2 = prompt_2 or prompt
412
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
413
+
414
+ # We only use the pooled prompt output from the CLIPTextModel
415
+ pooled_prompt_embeds = self._get_clip_prompt_embeds(
416
+ prompt=prompt,
417
+ device=device,
418
+ num_images_per_prompt=num_images_per_prompt,
419
+ )
420
+ prompt_embeds = self._get_t5_prompt_embeds(
421
+ prompt=prompt_2,
422
+ num_images_per_prompt=num_images_per_prompt,
423
+ max_sequence_length=max_sequence_length,
424
+ device=device,
425
+ )
426
+
427
+ if do_classifier_free_guidance:
428
+ # 处理 negative prompt
429
+ negative_prompt = negative_prompt or ""
430
+ negative_prompt_2 = negative_prompt_2 or negative_prompt
431
+
432
+ negative_pooled_prompt_embeds = self._get_clip_prompt_embeds(
433
+ negative_prompt,
434
+ device=device,
435
+ num_images_per_prompt=num_images_per_prompt,
436
+ )
437
+ negative_prompt_embeds = self._get_t5_prompt_embeds(
438
+ negative_prompt_2,
439
+ num_images_per_prompt=num_images_per_prompt,
440
+ max_sequence_length=max_sequence_length,
441
+ device=device,
442
+ )
443
+ else:
444
+ negative_pooled_prompt_embeds = None
445
+ negative_prompt_embeds = None
446
+
447
+ if self.text_encoder is not None:
448
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
449
+ # Retrieve the original scale by scaling back the LoRA layers
450
+ unscale_lora_layers(self.text_encoder, lora_scale)
451
+
452
+ if self.text_encoder_2 is not None:
453
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
454
+ # Retrieve the original scale by scaling back the LoRA layers
455
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
456
+
457
+ text_ids = torch.zeros(batch_size, prompt_embeds.shape[1], 3).to(
458
+ device=device, dtype=self.text_encoder.dtype
459
+ )
460
+
461
+ return (
462
+ prompt_embeds,
463
+ pooled_prompt_embeds,
464
+ negative_prompt_embeds,
465
+ negative_pooled_prompt_embeds,
466
+ text_ids,
467
+ )
468
+
469
+ def check_inputs(
470
+ self,
471
+ prompt,
472
+ prompt_2,
473
+ height,
474
+ width,
475
+ prompt_embeds=None,
476
+ pooled_prompt_embeds=None,
477
+ callback_on_step_end_tensor_inputs=None,
478
+ max_sequence_length=None,
479
+ ):
480
+ if height % 8 != 0 or width % 8 != 0:
481
+ raise ValueError(
482
+ f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
483
+ )
484
+
485
+ if callback_on_step_end_tensor_inputs is not None and not all(
486
+ k in self._callback_tensor_inputs
487
+ for k in callback_on_step_end_tensor_inputs
488
+ ):
489
+ raise ValueError(
490
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
491
+ )
492
+
493
+ if prompt is not None and prompt_embeds is not None:
494
+ raise ValueError(
495
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
496
+ " only forward one of the two."
497
+ )
498
+ elif prompt_2 is not None and prompt_embeds is not None:
499
+ raise ValueError(
500
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
501
+ " only forward one of the two."
502
+ )
503
+ elif prompt is None and prompt_embeds is None:
504
+ raise ValueError(
505
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
506
+ )
507
+ elif prompt is not None and (
508
+ not isinstance(prompt, str) and not isinstance(prompt, list)
509
+ ):
510
+ raise ValueError(
511
+ f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
512
+ )
513
+ elif prompt_2 is not None and (
514
+ not isinstance(prompt_2, str) and not isinstance(prompt_2, list)
515
+ ):
516
+ raise ValueError(
517
+ f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}"
518
+ )
519
+
520
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
521
+ raise ValueError(
522
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
523
+ )
524
+
525
+ if max_sequence_length is not None and max_sequence_length > 512:
526
+ raise ValueError(
527
+ f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}"
528
+ )
529
+
530
+ # Copied from diffusers.pipelines.flux.pipeline_flux._prepare_latent_image_ids
531
+ @staticmethod
532
+ def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
533
+ latent_image_ids = torch.zeros(height // 2, width // 2, 3)
534
+ latent_image_ids[..., 1] = (
535
+ latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
536
+ )
537
+ latent_image_ids[..., 2] = (
538
+ latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
539
+ )
540
+
541
+ (
542
+ latent_image_id_height,
543
+ latent_image_id_width,
544
+ latent_image_id_channels,
545
+ ) = latent_image_ids.shape
546
+
547
+ latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1)
548
+ latent_image_ids = latent_image_ids.reshape(
549
+ batch_size,
550
+ latent_image_id_height * latent_image_id_width,
551
+ latent_image_id_channels,
552
+ )
553
+
554
+ return latent_image_ids.to(device=device, dtype=dtype)
555
+
556
+ # Copied from diffusers.pipelines.flux.pipeline_flux._pack_latents
557
+ @staticmethod
558
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
559
+ latents = latents.view(
560
+ batch_size, num_channels_latents, height // 2, 2, width // 2, 2
561
+ )
562
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
563
+ latents = latents.reshape(
564
+ batch_size, (height // 2) * (width // 2), num_channels_latents * 4
565
+ )
566
+
567
+ return latents
568
+
569
+ # Copied from diffusers.pipelines.flux.pipeline_flux._unpack_latents
570
+ @staticmethod
571
+ def _unpack_latents(latents, height, width, vae_scale_factor):
572
+ batch_size, num_patches, channels = latents.shape
573
+
574
+ height = height // vae_scale_factor
575
+ width = width // vae_scale_factor
576
+
577
+ latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
578
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
579
+
580
+ latents = latents.reshape(
581
+ batch_size, channels // (2 * 2), height * 2, width * 2
582
+ )
583
+
584
+ return latents
585
+
586
+ # Copied from diffusers.pipelines.flux.pipeline_flux.prepare_latents
587
+ def prepare_latents(
588
+ self,
589
+ batch_size,
590
+ num_channels_latents,
591
+ height,
592
+ width,
593
+ dtype,
594
+ device,
595
+ generator,
596
+ latents=None,
597
+ ):
598
+ height = 2 * (int(height) // self.vae_scale_factor)
599
+ width = 2 * (int(width) // self.vae_scale_factor)
600
+
601
+ shape = (batch_size, num_channels_latents, height, width)
602
+
603
+ if latents is not None:
604
+ latent_image_ids = self._prepare_latent_image_ids(
605
+ batch_size, height, width, device, dtype
606
+ )
607
+ return latents.to(device=device, dtype=dtype), latent_image_ids
608
+
609
+ if isinstance(generator, list) and len(generator) != batch_size:
610
+ raise ValueError(
611
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
612
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
613
+ )
614
+
615
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
616
+ latents = self._pack_latents(
617
+ latents, batch_size, num_channels_latents, height, width
618
+ )
619
+
620
+ latent_image_ids = self._prepare_latent_image_ids(
621
+ batch_size, height, width, device, dtype
622
+ )
623
+
624
+ return latents, latent_image_ids
625
+
626
+ # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
627
+ def prepare_image(
628
+ self,
629
+ image,
630
+ width,
631
+ height,
632
+ batch_size,
633
+ num_images_per_prompt,
634
+ device,
635
+ dtype,
636
+ ):
637
+ if isinstance(image, torch.Tensor):
638
+ pass
639
+ else:
640
+ image = self.image_processor.preprocess(image, height=height, width=width)
641
+
642
+ image_batch_size = image.shape[0]
643
+
644
+ if image_batch_size == 1:
645
+ repeat_by = batch_size
646
+ else:
647
+ # image batch size is the same as prompt batch size
648
+ repeat_by = num_images_per_prompt
649
+
650
+ image = image.repeat_interleave(repeat_by, dim=0)
651
+
652
+ image = image.to(device=device, dtype=dtype)
653
+
654
+ return image
655
+
656
+ def prepare_image_with_mask(
657
+ self,
658
+ image,
659
+ mask,
660
+ width,
661
+ height,
662
+ batch_size,
663
+ num_images_per_prompt,
664
+ device,
665
+ dtype,
666
+ do_classifier_free_guidance=False,
667
+ ):
668
+ # Prepare image
669
+ if isinstance(image, torch.Tensor):
670
+ pass
671
+ else:
672
+ image = self.image_processor.preprocess(image, height=height, width=width)
673
+
674
+ image_batch_size = image.shape[0]
675
+ if image_batch_size == 1:
676
+ repeat_by = batch_size
677
+ else:
678
+ # image batch size is the same as prompt batch size
679
+ repeat_by = num_images_per_prompt
680
+ image = image.repeat_interleave(repeat_by, dim=0)
681
+ image = image.to(device=device, dtype=dtype)
682
+
683
+ # Prepare mask
684
+ if isinstance(mask, torch.Tensor):
685
+ pass
686
+ else:
687
+ mask = self.mask_processor.preprocess(mask, height=height, width=width)
688
+ mask = mask.repeat_interleave(repeat_by, dim=0)
689
+ mask = mask.to(device=device, dtype=dtype)
690
+
691
+ # Get masked image
692
+ masked_image = image.clone()
693
+ masked_image[(mask > 0.5).repeat(1, 3, 1, 1)] = -1
694
+
695
+ # Encode to latents
696
+ image_latents = self.vae.encode(
697
+ masked_image.to(self.vae.dtype)
698
+ ).latent_dist.sample()
699
+ image_latents = (
700
+ image_latents - self.vae.config.shift_factor
701
+ ) * self.vae.config.scaling_factor
702
+ image_latents = image_latents.to(dtype)
703
+
704
+ mask = torch.nn.functional.interpolate(
705
+ mask,
706
+ size=(
707
+ height // self.vae_scale_factor * 2,
708
+ width // self.vae_scale_factor * 2,
709
+ ),
710
+ )
711
+ mask = 1 - mask
712
+
713
+ control_image = torch.cat([image_latents, mask], dim=1)
714
+
715
+ # Pack cond latents
716
+ packed_control_image = self._pack_latents(
717
+ control_image,
718
+ batch_size * num_images_per_prompt,
719
+ control_image.shape[1],
720
+ control_image.shape[2],
721
+ control_image.shape[3],
722
+ )
723
+
724
+ if do_classifier_free_guidance:
725
+ packed_control_image = torch.cat([packed_control_image] * 2)
726
+
727
+ return packed_control_image, height, width
728
+
729
+ @property
730
+ def guidance_scale(self):
731
+ return self._guidance_scale
732
+
733
+ @property
734
+ def joint_attention_kwargs(self):
735
+ return self._joint_attention_kwargs
736
+
737
+ @property
738
+ def num_timesteps(self):
739
+ return self._num_timesteps
740
+
741
+ @property
742
+ def interrupt(self):
743
+ return self._interrupt
744
+
745
+ @torch.no_grad()
746
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
747
+ def __call__(
748
+ self,
749
+ prompt: Union[str, List[str]] = None,
750
+ prompt_2: Optional[Union[str, List[str]]] = None,
751
+ height: Optional[int] = None,
752
+ width: Optional[int] = None,
753
+ num_inference_steps: int = 28,
754
+ timesteps: List[int] = None,
755
+ guidance_scale: float = 7.0,
756
+ true_guidance_scale: float = 3.5,
757
+ negative_prompt: Optional[Union[str, List[str]]] = None,
758
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
759
+ control_image: PipelineImageInput = None,
760
+ control_mask: PipelineImageInput = None,
761
+ controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
762
+ num_images_per_prompt: Optional[int] = 1,
763
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
764
+ latents: Optional[torch.FloatTensor] = None,
765
+ prompt_embeds: Optional[torch.FloatTensor] = None,
766
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
767
+ output_type: Optional[str] = "pil",
768
+ return_dict: bool = True,
769
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
770
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
771
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
772
+ max_sequence_length: int = 512,
773
+ ):
774
+ r"""
775
+ Function invoked when calling the pipeline for generation.
776
+
777
+ Args:
778
+ prompt (`str` or `List[str]`, *optional*):
779
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
780
+ instead.
781
+ prompt_2 (`str` or `List[str]`, *optional*):
782
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
783
+ will be used instead
784
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
785
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
786
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
787
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
788
+ num_inference_steps (`int`, *optional*, defaults to 50):
789
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
790
+ expense of slower inference.
791
+ timesteps (`List[int]`, *optional*):
792
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
793
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
794
+ passed will be used. Must be in descending order.
795
+ guidance_scale (`float`, *optional*, defaults to 7.0):
796
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
797
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
798
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
799
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
800
+ usually at the expense of lower image quality.
801
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
802
+ The number of images to generate per prompt.
803
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
804
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
805
+ to make generation deterministic.
806
+ latents (`torch.FloatTensor`, *optional*):
807
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
808
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
809
+ tensor will ge generated by sampling using the supplied random `generator`.
810
+ prompt_embeds (`torch.FloatTensor`, *optional*):
811
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
812
+ provided, text embeddings will be generated from `prompt` input argument.
813
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
814
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
815
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
816
+ output_type (`str`, *optional*, defaults to `"pil"`):
817
+ The output format of the generate image. Choose between
818
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
819
+ return_dict (`bool`, *optional*, defaults to `True`):
820
+ Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
821
+ joint_attention_kwargs (`dict`, *optional*):
822
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
823
+ `self.processor` in
824
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
825
+ callback_on_step_end (`Callable`, *optional*):
826
+ A function that calls at the end of each denoising steps during the inference. The function is called
827
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
828
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
829
+ `callback_on_step_end_tensor_inputs`.
830
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
831
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
832
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
833
+ `._callback_tensor_inputs` attribute of your pipeline class.
834
+ max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
835
+
836
+ Examples:
837
+
838
+ Returns:
839
+ [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
840
+ is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
841
+ images.
842
+ """
843
+
844
+ height = height or self.default_sample_size * self.vae_scale_factor
845
+ width = width or self.default_sample_size * self.vae_scale_factor
846
+
847
+ # 1. Check inputs. Raise error if not correct
848
+ self.check_inputs(
849
+ prompt,
850
+ prompt_2,
851
+ height,
852
+ width,
853
+ prompt_embeds=prompt_embeds,
854
+ pooled_prompt_embeds=pooled_prompt_embeds,
855
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
856
+ max_sequence_length=max_sequence_length,
857
+ )
858
+
859
+ self._guidance_scale = true_guidance_scale
860
+ self._joint_attention_kwargs = joint_attention_kwargs
861
+ self._interrupt = False
862
+
863
+ # 2. Define call parameters
864
+ if prompt is not None and isinstance(prompt, str):
865
+ batch_size = 1
866
+ elif prompt is not None and isinstance(prompt, list):
867
+ batch_size = len(prompt)
868
+ else:
869
+ batch_size = prompt_embeds.shape[0]
870
+
871
+ device_0 = self.controlnet.device # First GPU
872
+ device_1 = self.transformer.device # Second GPU
873
+
874
+ # Move inputs to appropriate devices
875
+ prompt_embeds = prompt_embeds.to(device_0)
876
+ pooled_prompt_embeds = pooled_prompt_embeds.to(device_0)
877
+
878
+ # During the generation loop
879
+ latent_model_input = (
880
+ torch.cat([prompt_embeds] * 2)
881
+ if self.do_classifier_free_guidance
882
+ else prompt_embeds
883
+ )
884
+ timestep = torch.tensor([1.0], device=device_0)
885
+
886
+ # ControlNet forward pass on first GPU
887
+ controlnet_output = self.controlnet(
888
+ hidden_states=latent_model_input,
889
+ controlnet_cond=control_image.to(device_0),
890
+ conditioning_scale=controlnet_conditioning_scale,
891
+ timestep=timestep / 1000,
892
+ guidance=None,
893
+ pooled_projections=pooled_prompt_embeds,
894
+ encoder_hidden_states=prompt_embeds,
895
+ txt_ids=text_ids.to(device_0),
896
+ img_ids=latent_image_ids.to(device_0),
897
+ joint_attention_kwargs=self.joint_attention_kwargs,
898
+ return_dict=False,
899
+ )
900
+
901
+ # Move necessary data to second GPU for transformer
902
+ controlnet_block_samples = [
903
+ sample.to(device_1) for sample in controlnet_output[0]
904
+ ]
905
+ controlnet_single_block_samples = (
906
+ [sample.to(device_1) for sample in controlnet_output[1]]
907
+ if controlnet_output[1] is not None
908
+ else None
909
+ )
910
+
911
+ # Transformer forward pass on second GPU
912
+ noise_pred = self.transformer(
913
+ hidden_states=latent_model_input.to(device_1),
914
+ timestep=timestep.to(device_1) / 1000,
915
+ guidance=None,
916
+ pooled_projections=pooled_prompt_embeds.to(device_1),
917
+ encoder_hidden_states=prompt_embeds.to(device_1),
918
+ controlnet_block_samples=controlnet_block_samples,
919
+ controlnet_single_block_samples=controlnet_single_block_samples,
920
+ txt_ids=text_ids.to(device_1),
921
+ img_ids=latent_image_ids.to(device_1),
922
+ joint_attention_kwargs=self.joint_attention_kwargs,
923
+ return_dict=False,
924
+ )[0]
925
+
926
+ # Move results back to first GPU for final processing
927
+ noise_pred = noise_pred.to(device_0)
928
+
929
+ # 5. Prepare timesteps
930
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
931
+ image_seq_len = noise_pred.shape[1]
932
+ mu = calculate_shift(
933
+ image_seq_len,
934
+ self.scheduler.config.base_image_seq_len,
935
+ self.scheduler.config.max_image_seq_len,
936
+ self.scheduler.config.base_shift,
937
+ self.scheduler.config.max_shift,
938
+ )
939
+ timesteps, num_inference_steps = retrieve_timesteps(
940
+ self.scheduler,
941
+ num_inference_steps,
942
+ device_0,
943
+ timesteps,
944
+ sigmas,
945
+ mu=mu,
946
+ )
947
+
948
+ num_warmup_steps = max(
949
+ len(timesteps) - num_inference_steps * self.scheduler.order, 0
950
+ )
951
+ self._num_timesteps = len(timesteps)
952
+
953
+ # 6. Denoising loop
954
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
955
+ for i, t in enumerate(timesteps):
956
+ if self.interrupt:
957
+ continue
958
+
959
+ latent_model_input = (
960
+ torch.cat([noise_pred] * 2)
961
+ if self.do_classifier_free_guidance
962
+ else noise_pred
963
+ )
964
+
965
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
966
+ timestep = t.expand(latent_model_input.shape[0]).to(
967
+ latent_model_input.dtype
968
+ )
969
+
970
+ # handle guidance
971
+ if self.transformer.config.guidance_embeds:
972
+ guidance = torch.tensor([guidance_scale], device=device_0)
973
+ guidance = guidance.expand(latent_model_input.shape[0])
974
+ else:
975
+ guidance = None
976
+
977
+ # controlnet
978
+ (
979
+ controlnet_block_samples,
980
+ controlnet_single_block_samples,
981
+ ) = self.controlnet(
982
+ hidden_states=latent_model_input,
983
+ controlnet_cond=control_image.to(device_0),
984
+ conditioning_scale=controlnet_conditioning_scale,
985
+ timestep=timestep / 1000,
986
+ guidance=guidance.to(device_0) if guidance is not None else None,
987
+ pooled_projections=pooled_prompt_embeds,
988
+ encoder_hidden_states=prompt_embeds,
989
+ txt_ids=text_ids.to(device_0),
990
+ img_ids=latent_image_ids.to(device_0),
991
+ joint_attention_kwargs=self.joint_attention_kwargs,
992
+ return_dict=False,
993
+ )
994
+
995
+ noise_pred = self.transformer(
996
+ hidden_states=latent_model_input.to(device_1),
997
+ timestep=timestep.to(device_1) / 1000,
998
+ guidance=guidance.to(device_1) if guidance is not None else None,
999
+ pooled_projections=pooled_prompt_embeds.to(device_1),
1000
+ encoder_hidden_states=prompt_embeds.to(device_1),
1001
+ controlnet_block_samples=controlnet_block_samples,
1002
+ controlnet_single_block_samples=controlnet_single_block_samples,
1003
+ txt_ids=text_ids.to(device_1),
1004
+ img_ids=latent_image_ids.to(device_1),
1005
+ joint_attention_kwargs=self.joint_attention_kwargs,
1006
+ return_dict=False,
1007
+ )[0]
1008
+
1009
+ # 在生成循环中
1010
+ if self.do_classifier_free_guidance:
1011
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1012
+ noise_pred = noise_pred_uncond + true_guidance_scale * (
1013
+ noise_pred_text - noise_pred_uncond
1014
+ )
1015
+
1016
+ # compute the previous noisy sample x_t -> x_t-1
1017
+ latents_dtype = noise_pred.dtype
1018
+ noise_pred = self.scheduler.step(
1019
+ noise_pred, t, noise_pred, return_dict=False
1020
+ )[0]
1021
+
1022
+ if noise_pred.dtype != latents_dtype:
1023
+ if torch.backends.mps.is_available():
1024
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1025
+ noise_pred = noise_pred.to(latents_dtype)
1026
+
1027
+ if callback_on_step_end is not None:
1028
+ callback_kwargs = {}
1029
+ for k in callback_on_step_end_tensor_inputs:
1030
+ callback_kwargs[k] = locals()[k]
1031
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1032
+
1033
+ noise_pred = callback_outputs.pop("latents", noise_pred)
1034
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1035
+
1036
+ # call the callback, if provided
1037
+ if i == len(timesteps) - 1 or (
1038
+ (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
1039
+ ):
1040
+ progress_bar.update()
1041
+
1042
+ if XLA_AVAILABLE:
1043
+ xm.mark_step()
1044
+
1045
+ if output_type == "latent":
1046
+ image = noise_pred
1047
+
1048
+ else:
1049
+ latents = self._unpack_latents(
1050
+ noise_pred, height, width, self.vae_scale_factor
1051
+ )
1052
+ latents = (
1053
+ latents / self.vae.config.scaling_factor
1054
+ ) + self.vae.config.shift_factor
1055
+ latents = latents.to(self.vae.dtype)
1056
+
1057
+ image = self.vae.decode(latents, return_dict=False)[0]
1058
+ image = self.image_processor.postprocess(image, output_type=output_type)
1059
+
1060
+ # Offload all models
1061
+ self.maybe_free_model_hooks()
1062
+
1063
+ if not return_dict:
1064
+ return (image,)
1065
+
1066
+ return FluxPipelineOutput(images=image)
poetry.lock ADDED
The diff for this file is too large to render. See raw diff
 
pyproject.toml ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [tool.poetry]
2
+ name = "arvo-inpainting"
3
+ version = "0.0.1"
4
+ description = "The inpaiting module for ARvo product photography pipeline"
5
+ authors = ["Swoyam-ARvo <me@swoyam.in>"]
6
+ readme = "README.md"
7
+
8
+ [tool.poetry.dependencies]
9
+ python = "^3.11"
10
+ diffusers = "0.30.2"
11
+ torch = "^2.6.0"
12
+ gradio = "^5.17.1"
13
+ transformers = "^4.49.0"
14
+
15
+
16
+ [build-system]
17
+ requires = ["poetry-core"]
18
+ build-backend = "poetry.core.masonry.api"
temp_input.png ADDED
temp_mask.png ADDED
transformer_flux.py ADDED
@@ -0,0 +1,525 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Dict, List, Optional, Union
2
+
3
+ import numpy as np
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+
8
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
9
+ from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
10
+ from diffusers.models.attention import FeedForward
11
+ from diffusers.models.attention_processor import (
12
+ Attention,
13
+ FluxAttnProcessor2_0,
14
+ FluxSingleAttnProcessor2_0,
15
+ )
16
+ from diffusers.models.modeling_utils import ModelMixin
17
+ from diffusers.models.normalization import (
18
+ AdaLayerNormContinuous,
19
+ AdaLayerNormZero,
20
+ AdaLayerNormZeroSingle,
21
+ )
22
+ from diffusers.utils import (
23
+ USE_PEFT_BACKEND,
24
+ is_torch_version,
25
+ logging,
26
+ scale_lora_layers,
27
+ unscale_lora_layers,
28
+ )
29
+ from diffusers.utils.torch_utils import maybe_allow_in_graph
30
+ from diffusers.models.embeddings import (
31
+ CombinedTimestepGuidanceTextProjEmbeddings,
32
+ CombinedTimestepTextProjEmbeddings,
33
+ )
34
+ from diffusers.models.modeling_outputs import Transformer2DModelOutput
35
+
36
+
37
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
38
+
39
+
40
+ # YiYi to-do: refactor rope related functions/classes
41
+ def rope(pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor:
42
+ assert dim % 2 == 0, "The dimension must be even."
43
+
44
+ scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
45
+ omega = 1.0 / (theta**scale)
46
+
47
+ batch_size, seq_length = pos.shape
48
+ out = torch.einsum("...n,d->...nd", pos, omega)
49
+ cos_out = torch.cos(out)
50
+ sin_out = torch.sin(out)
51
+
52
+ stacked_out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)
53
+ out = stacked_out.view(batch_size, -1, dim // 2, 2, 2)
54
+ return out.float()
55
+
56
+
57
+ # YiYi to-do: refactor rope related functions/classes
58
+ class EmbedND(nn.Module):
59
+ def __init__(self, dim: int, theta: int, axes_dim: List[int]):
60
+ super().__init__()
61
+ self.dim = dim
62
+ self.theta = theta
63
+ self.axes_dim = axes_dim
64
+
65
+ def forward(self, ids: torch.Tensor) -> torch.Tensor:
66
+ n_axes = ids.shape[-1]
67
+ emb = torch.cat(
68
+ [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
69
+ dim=-3,
70
+ )
71
+ return emb.unsqueeze(1)
72
+
73
+
74
+ @maybe_allow_in_graph
75
+ class FluxSingleTransformerBlock(nn.Module):
76
+ r"""
77
+ A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
78
+
79
+ Reference: https://arxiv.org/abs/2403.03206
80
+
81
+ Parameters:
82
+ dim (`int`): The number of channels in the input and output.
83
+ num_attention_heads (`int`): The number of heads to use for multi-head attention.
84
+ attention_head_dim (`int`): The number of channels in each head.
85
+ context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
86
+ processing of `context` conditions.
87
+ """
88
+
89
+ def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0):
90
+ super().__init__()
91
+ self.mlp_hidden_dim = int(dim * mlp_ratio)
92
+
93
+ self.norm = AdaLayerNormZeroSingle(dim)
94
+ self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
95
+ self.act_mlp = nn.GELU(approximate="tanh")
96
+ self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
97
+
98
+ processor = FluxSingleAttnProcessor2_0()
99
+ self.attn = Attention(
100
+ query_dim=dim,
101
+ cross_attention_dim=None,
102
+ dim_head=attention_head_dim,
103
+ heads=num_attention_heads,
104
+ out_dim=dim,
105
+ bias=True,
106
+ processor=processor,
107
+ qk_norm="rms_norm",
108
+ eps=1e-6,
109
+ pre_only=True,
110
+ )
111
+
112
+ def forward(
113
+ self,
114
+ hidden_states: torch.FloatTensor,
115
+ temb: torch.FloatTensor,
116
+ image_rotary_emb=None,
117
+ ):
118
+ residual = hidden_states
119
+ norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
120
+ mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
121
+
122
+ attn_output = self.attn(
123
+ hidden_states=norm_hidden_states,
124
+ image_rotary_emb=image_rotary_emb,
125
+ )
126
+
127
+ hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
128
+ gate = gate.unsqueeze(1)
129
+ hidden_states = gate * self.proj_out(hidden_states)
130
+ hidden_states = residual + hidden_states
131
+ if hidden_states.dtype == torch.float16:
132
+ hidden_states = hidden_states.clip(-65504, 65504)
133
+
134
+ return hidden_states
135
+
136
+
137
+ @maybe_allow_in_graph
138
+ class FluxTransformerBlock(nn.Module):
139
+ r"""
140
+ A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
141
+
142
+ Reference: https://arxiv.org/abs/2403.03206
143
+
144
+ Parameters:
145
+ dim (`int`): The number of channels in the input and output.
146
+ num_attention_heads (`int`): The number of heads to use for multi-head attention.
147
+ attention_head_dim (`int`): The number of channels in each head.
148
+ context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
149
+ processing of `context` conditions.
150
+ """
151
+
152
+ def __init__(
153
+ self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6
154
+ ):
155
+ super().__init__()
156
+
157
+ self.norm1 = AdaLayerNormZero(dim)
158
+
159
+ self.norm1_context = AdaLayerNormZero(dim)
160
+
161
+ if hasattr(F, "scaled_dot_product_attention"):
162
+ processor = FluxAttnProcessor2_0()
163
+ else:
164
+ raise ValueError(
165
+ "The current PyTorch version does not support the `scaled_dot_product_attention` function."
166
+ )
167
+ self.attn = Attention(
168
+ query_dim=dim,
169
+ cross_attention_dim=None,
170
+ added_kv_proj_dim=dim,
171
+ dim_head=attention_head_dim,
172
+ heads=num_attention_heads,
173
+ out_dim=dim,
174
+ context_pre_only=False,
175
+ bias=True,
176
+ processor=processor,
177
+ qk_norm=qk_norm,
178
+ eps=eps,
179
+ )
180
+
181
+ self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
182
+ self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
183
+
184
+ self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
185
+ self.ff_context = FeedForward(
186
+ dim=dim, dim_out=dim, activation_fn="gelu-approximate"
187
+ )
188
+
189
+ # let chunk size default to None
190
+ self._chunk_size = None
191
+ self._chunk_dim = 0
192
+
193
+ def forward(
194
+ self,
195
+ hidden_states: torch.FloatTensor,
196
+ encoder_hidden_states: torch.FloatTensor,
197
+ temb: torch.FloatTensor,
198
+ image_rotary_emb=None,
199
+ ):
200
+ norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
201
+ hidden_states, emb=temb
202
+ )
203
+
204
+ (
205
+ norm_encoder_hidden_states,
206
+ c_gate_msa,
207
+ c_shift_mlp,
208
+ c_scale_mlp,
209
+ c_gate_mlp,
210
+ ) = self.norm1_context(encoder_hidden_states, emb=temb)
211
+
212
+ # Attention.
213
+ attn_output, context_attn_output = self.attn(
214
+ hidden_states=norm_hidden_states,
215
+ encoder_hidden_states=norm_encoder_hidden_states,
216
+ image_rotary_emb=image_rotary_emb,
217
+ )
218
+
219
+ # Process attention outputs for the `hidden_states`.
220
+ attn_output = gate_msa.unsqueeze(1) * attn_output
221
+ hidden_states = hidden_states + attn_output
222
+
223
+ norm_hidden_states = self.norm2(hidden_states)
224
+ norm_hidden_states = (
225
+ norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
226
+ )
227
+
228
+ ff_output = self.ff(norm_hidden_states)
229
+ ff_output = gate_mlp.unsqueeze(1) * ff_output
230
+
231
+ hidden_states = hidden_states + ff_output
232
+
233
+ # Process attention outputs for the `encoder_hidden_states`.
234
+
235
+ context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
236
+ encoder_hidden_states = encoder_hidden_states + context_attn_output
237
+
238
+ norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
239
+ norm_encoder_hidden_states = (
240
+ norm_encoder_hidden_states * (1 + c_scale_mlp[:, None])
241
+ + c_shift_mlp[:, None]
242
+ )
243
+
244
+ context_ff_output = self.ff_context(norm_encoder_hidden_states)
245
+ encoder_hidden_states = (
246
+ encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
247
+ )
248
+ if encoder_hidden_states.dtype == torch.float16:
249
+ encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
250
+
251
+ return encoder_hidden_states, hidden_states
252
+
253
+
254
+ class FluxTransformer2DModel(
255
+ ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin
256
+ ):
257
+ """
258
+ The Transformer model introduced in Flux.
259
+
260
+ Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
261
+
262
+ Parameters:
263
+ patch_size (`int`): Patch size to turn the input data into small patches.
264
+ in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
265
+ num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.
266
+ num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.
267
+ attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
268
+ num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
269
+ joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
270
+ pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
271
+ guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings.
272
+ """
273
+
274
+ _supports_gradient_checkpointing = True
275
+
276
+ @register_to_config
277
+ def __init__(
278
+ self,
279
+ patch_size: int = 1,
280
+ in_channels: int = 64,
281
+ num_layers: int = 19,
282
+ num_single_layers: int = 38,
283
+ attention_head_dim: int = 128,
284
+ num_attention_heads: int = 24,
285
+ joint_attention_dim: int = 4096,
286
+ pooled_projection_dim: int = 768,
287
+ guidance_embeds: bool = False,
288
+ axes_dims_rope: List[int] = [16, 56, 56],
289
+ ):
290
+ super().__init__()
291
+ self.out_channels = in_channels
292
+ self.inner_dim = (
293
+ self.config.num_attention_heads * self.config.attention_head_dim
294
+ )
295
+
296
+ self.pos_embed = EmbedND(
297
+ dim=self.inner_dim, theta=10000, axes_dim=axes_dims_rope
298
+ )
299
+ text_time_guidance_cls = (
300
+ CombinedTimestepGuidanceTextProjEmbeddings
301
+ if guidance_embeds
302
+ else CombinedTimestepTextProjEmbeddings
303
+ )
304
+ self.time_text_embed = text_time_guidance_cls(
305
+ embedding_dim=self.inner_dim,
306
+ pooled_projection_dim=self.config.pooled_projection_dim,
307
+ )
308
+
309
+ self.context_embedder = nn.Linear(
310
+ self.config.joint_attention_dim, self.inner_dim
311
+ )
312
+ self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim)
313
+
314
+ self.transformer_blocks = nn.ModuleList(
315
+ [
316
+ FluxTransformerBlock(
317
+ dim=self.inner_dim,
318
+ num_attention_heads=self.config.num_attention_heads,
319
+ attention_head_dim=self.config.attention_head_dim,
320
+ )
321
+ for i in range(self.config.num_layers)
322
+ ]
323
+ )
324
+
325
+ self.single_transformer_blocks = nn.ModuleList(
326
+ [
327
+ FluxSingleTransformerBlock(
328
+ dim=self.inner_dim,
329
+ num_attention_heads=self.config.num_attention_heads,
330
+ attention_head_dim=self.config.attention_head_dim,
331
+ )
332
+ for i in range(self.config.num_single_layers)
333
+ ]
334
+ )
335
+
336
+ self.norm_out = AdaLayerNormContinuous(
337
+ self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6
338
+ )
339
+ self.proj_out = nn.Linear(
340
+ self.inner_dim, patch_size * patch_size * self.out_channels, bias=True
341
+ )
342
+
343
+ self.gradient_checkpointing = False
344
+
345
+ def _set_gradient_checkpointing(self, module, value=False):
346
+ if hasattr(module, "gradient_checkpointing"):
347
+ module.gradient_checkpointing = value
348
+
349
+ def forward(
350
+ self,
351
+ hidden_states: torch.Tensor,
352
+ encoder_hidden_states: torch.Tensor = None,
353
+ pooled_projections: torch.Tensor = None,
354
+ timestep: torch.LongTensor = None,
355
+ img_ids: torch.Tensor = None,
356
+ txt_ids: torch.Tensor = None,
357
+ guidance: torch.Tensor = None,
358
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
359
+ controlnet_block_samples=None,
360
+ controlnet_single_block_samples=None,
361
+ return_dict: bool = True,
362
+ ) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
363
+ """
364
+ The [`FluxTransformer2DModel`] forward method.
365
+
366
+ Args:
367
+ hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
368
+ Input `hidden_states`.
369
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
370
+ Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
371
+ pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
372
+ from the embeddings of input conditions.
373
+ timestep ( `torch.LongTensor`):
374
+ Used to indicate denoising step.
375
+ block_controlnet_hidden_states: (`list` of `torch.Tensor`):
376
+ A list of tensors that if specified are added to the residuals of transformer blocks.
377
+ joint_attention_kwargs (`dict`, *optional*):
378
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
379
+ `self.processor` in
380
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
381
+ return_dict (`bool`, *optional*, defaults to `True`):
382
+ Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
383
+ tuple.
384
+
385
+ Returns:
386
+ If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
387
+ `tuple` where the first element is the sample tensor.
388
+ """
389
+ if joint_attention_kwargs is not None:
390
+ joint_attention_kwargs = joint_attention_kwargs.copy()
391
+ lora_scale = joint_attention_kwargs.pop("scale", 1.0)
392
+ else:
393
+ lora_scale = 1.0
394
+
395
+ if USE_PEFT_BACKEND:
396
+ # weight the lora layers by setting `lora_scale` for each PEFT layer
397
+ scale_lora_layers(self, lora_scale)
398
+ else:
399
+ if (
400
+ joint_attention_kwargs is not None
401
+ and joint_attention_kwargs.get("scale", None) is not None
402
+ ):
403
+ logger.warning(
404
+ "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
405
+ )
406
+ hidden_states = self.x_embedder(hidden_states)
407
+
408
+ timestep = timestep.to(hidden_states.dtype) * 1000
409
+ if guidance is not None:
410
+ guidance = guidance.to(hidden_states.dtype) * 1000
411
+ else:
412
+ guidance = None
413
+ temb = (
414
+ self.time_text_embed(timestep, pooled_projections)
415
+ if guidance is None
416
+ else self.time_text_embed(timestep, guidance, pooled_projections)
417
+ )
418
+ encoder_hidden_states = self.context_embedder(encoder_hidden_states)
419
+
420
+ txt_ids = txt_ids.expand(img_ids.size(0), -1, -1)
421
+ ids = torch.cat((txt_ids, img_ids), dim=1)
422
+ image_rotary_emb = self.pos_embed(ids)
423
+
424
+ for index_block, block in enumerate(self.transformer_blocks):
425
+ if self.training and self.gradient_checkpointing:
426
+
427
+ def create_custom_forward(module, return_dict=None):
428
+ def custom_forward(*inputs):
429
+ if return_dict is not None:
430
+ return module(*inputs, return_dict=return_dict)
431
+ else:
432
+ return module(*inputs)
433
+
434
+ return custom_forward
435
+
436
+ ckpt_kwargs: Dict[str, Any] = (
437
+ {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
438
+ )
439
+ (
440
+ encoder_hidden_states,
441
+ hidden_states,
442
+ ) = torch.utils.checkpoint.checkpoint(
443
+ create_custom_forward(block),
444
+ hidden_states,
445
+ encoder_hidden_states,
446
+ temb,
447
+ image_rotary_emb,
448
+ **ckpt_kwargs,
449
+ )
450
+
451
+ else:
452
+ encoder_hidden_states, hidden_states = block(
453
+ hidden_states=hidden_states,
454
+ encoder_hidden_states=encoder_hidden_states,
455
+ temb=temb,
456
+ image_rotary_emb=image_rotary_emb,
457
+ )
458
+
459
+ # controlnet residual
460
+ if controlnet_block_samples is not None:
461
+ interval_control = len(self.transformer_blocks) / len(
462
+ controlnet_block_samples
463
+ )
464
+ interval_control = int(np.ceil(interval_control))
465
+ hidden_states = (
466
+ hidden_states
467
+ + controlnet_block_samples[index_block // interval_control]
468
+ )
469
+
470
+ hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
471
+
472
+ for index_block, block in enumerate(self.single_transformer_blocks):
473
+ if self.training and self.gradient_checkpointing:
474
+
475
+ def create_custom_forward(module, return_dict=None):
476
+ def custom_forward(*inputs):
477
+ if return_dict is not None:
478
+ return module(*inputs, return_dict=return_dict)
479
+ else:
480
+ return module(*inputs)
481
+
482
+ return custom_forward
483
+
484
+ ckpt_kwargs: Dict[str, Any] = (
485
+ {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
486
+ )
487
+ hidden_states = torch.utils.checkpoint.checkpoint(
488
+ create_custom_forward(block),
489
+ hidden_states,
490
+ temb,
491
+ image_rotary_emb,
492
+ **ckpt_kwargs,
493
+ )
494
+
495
+ else:
496
+ hidden_states = block(
497
+ hidden_states=hidden_states,
498
+ temb=temb,
499
+ image_rotary_emb=image_rotary_emb,
500
+ )
501
+
502
+ # controlnet residual
503
+ if controlnet_single_block_samples is not None:
504
+ interval_control = len(self.single_transformer_blocks) / len(
505
+ controlnet_single_block_samples
506
+ )
507
+ interval_control = int(np.ceil(interval_control))
508
+ hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
509
+ hidden_states[:, encoder_hidden_states.shape[1] :, ...]
510
+ + controlnet_single_block_samples[index_block // interval_control]
511
+ )
512
+
513
+ hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
514
+
515
+ hidden_states = self.norm_out(hidden_states, temb)
516
+ output = self.proj_out(hidden_states)
517
+
518
+ if USE_PEFT_BACKEND:
519
+ # remove `lora_scale` from each PEFT layer
520
+ unscale_lora_layers(self, lora_scale)
521
+
522
+ if not return_dict:
523
+ return (output,)
524
+
525
+ return Transformer2DModelOutput(sample=output)