Spaces:
Runtime error
Runtime error
syedislamuddin
commited on
Commit
•
2cf664c
1
Parent(s):
b4b3c55
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,1100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#from turtle import shape
|
2 |
+
import streamlit as st
|
3 |
+
#from st_keyup import st_keyup
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
from st_aggrid import AgGrid, GridOptionsBuilder,GridUpdateMode,DataReturnMode
|
7 |
+
|
8 |
+
import os
|
9 |
+
|
10 |
+
st.set_page_config(layout="wide")
|
11 |
+
st.markdown(
|
12 |
+
"""
|
13 |
+
<style>
|
14 |
+
.streamlit-expanderHeader {
|
15 |
+
font-size: x-large;
|
16 |
+
}
|
17 |
+
</style>
|
18 |
+
""",
|
19 |
+
unsafe_allow_html=True,
|
20 |
+
)
|
21 |
+
caution = '<p style="font-family:sans-serif; color:Red; font-size: 18px;">Please note that Only one Guide (from pair) is found. Please see guides not found section for other guide</p>'
|
22 |
+
caution1 = '<p style="font-family:sans-serif; color:Red; font-size: 18px;">Please note that Each mutated guide is reported as a sepearte line. sgID_1/2, sgRNA_1/2, chr_sgRNA_1/2 and position_sgRNA_1/2 represent values for reference/mutated guide</p>'
|
23 |
+
caution2 = '<p style="font-family:sans-serif; color:Red; font-size: 18px;">Please Select a single/multiple guides and then select Check Box A, B or C Otherwise code will through error</p>'
|
24 |
+
table_edit = '<p style="font-family:sans-serif; color:Green; font-size: 16px;">About Table: Please note that table can be <b>sorted by clicking on any column</b> and <b>Multiple rows can be selected</b> (by clicking check box in first column) to save only those rows.</p>'
|
25 |
+
caution_genes = '<p style="font-family:sans-serif; color:Red; font-size: 16px;">Please make sure that desired genes from all three lists should be selected to generate Order Ready Table.</p>'
|
26 |
+
|
27 |
+
def transform(df,str):
|
28 |
+
# Select columns
|
29 |
+
#cols = st.multiselect('Please select columns to save current Table as csv file',
|
30 |
+
cols = st.multiselect(str,
|
31 |
+
df.columns.tolist(),
|
32 |
+
df.columns.tolist()
|
33 |
+
)
|
34 |
+
df = df[cols]
|
35 |
+
return df
|
36 |
+
|
37 |
+
def convert_df(df):
|
38 |
+
return df.to_csv().encode('utf-8')
|
39 |
+
def convert_df1(df):
|
40 |
+
return df.to_csv(index=False).encode('utf-8')
|
41 |
+
|
42 |
+
|
43 |
+
# CSS to inject contained in a string
|
44 |
+
hide_table_row_index = """
|
45 |
+
<style>
|
46 |
+
thead tr th:first-child {display:none}
|
47 |
+
tbody th {display:none}
|
48 |
+
</style>
|
49 |
+
"""
|
50 |
+
|
51 |
+
# Inject CSS with Markdown
|
52 |
+
st.markdown(hide_table_row_index, unsafe_allow_html=True)
|
53 |
+
|
54 |
+
|
55 |
+
#########TABLE DISPLAY
|
56 |
+
def tbl_disp(dat,var,ref,key,flg=1):
|
57 |
+
dat.reset_index(drop=True, inplace=True)
|
58 |
+
#df = transform(dft,'Please Select columns to save whole table')
|
59 |
+
#fname = st.text_input('Please input file name to save Table', 'temp')
|
60 |
+
#fname = st_keyup("Please input file name to save Table", value='temp')
|
61 |
+
csv = convert_df(dat)
|
62 |
+
if flg==1:
|
63 |
+
st.download_button(
|
64 |
+
label="Download Full Table as CSV file",
|
65 |
+
data=csv,
|
66 |
+
file_name=var+'_'+ref+'.csv',#fname+'.csv',
|
67 |
+
mime='text/csv',
|
68 |
+
#key=key,
|
69 |
+
)
|
70 |
+
#st.table(dft)
|
71 |
+
#st.markdown(table_edit,unsafe_allow_html=True)
|
72 |
+
gb = GridOptionsBuilder.from_dataframe(dat)
|
73 |
+
gb.configure_pagination(enabled=False)#,paginationAutoPageSize=False)#True) #Add pagination
|
74 |
+
gb.configure_default_column(enablePivot=True, enableValue=True, enableRowGroup=True)
|
75 |
+
gb.configure_selection(selection_mode="multiple", use_checkbox=True)
|
76 |
+
gb.configure_column("gene", headerCheckboxSelection = True)
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
gb.configure_side_bar()
|
81 |
+
gridOptions = gb.build()
|
82 |
+
|
83 |
+
grid_response = AgGrid(
|
84 |
+
dat,
|
85 |
+
height=200,
|
86 |
+
gridOptions=gridOptions,
|
87 |
+
enable_enterprise_modules=True,
|
88 |
+
update_mode=GridUpdateMode.MODEL_CHANGED,
|
89 |
+
data_return_mode=DataReturnMode.FILTERED_AND_SORTED,
|
90 |
+
fit_columns_on_grid_load=False,
|
91 |
+
header_checkbox_selection_filtered_only=True,
|
92 |
+
use_checkbox=True,
|
93 |
+
width='100%'
|
94 |
+
#key=key
|
95 |
+
)
|
96 |
+
|
97 |
+
selected = grid_response['selected_rows']
|
98 |
+
if selected:
|
99 |
+
#st.write('Selected rows')
|
100 |
+
|
101 |
+
dfs = pd.DataFrame(selected)
|
102 |
+
#st.dataframe(dfs[dfs.columns[1:dfs.shape[1]]])
|
103 |
+
|
104 |
+
#dfs1 = transform(dfs[dfs.columns[1:dfs.shape[1]]],'Please select columns to save selected Table')
|
105 |
+
csv = convert_df1(dfs[dfs.columns[1:dfs.shape[1]]])
|
106 |
+
#csv = convert_df1(dfs1)
|
107 |
+
|
108 |
+
if flg:
|
109 |
+
st.download_button(
|
110 |
+
label="Download Selected data as CSV",
|
111 |
+
data=csv,
|
112 |
+
file_name=var+'_'+ref+'.csv',
|
113 |
+
mime='text/csv',
|
114 |
+
)
|
115 |
+
return dfs
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
def assemble_tbl(t):
|
120 |
+
dft = pd.DataFrame(columns=['sgID_1','sgRNA_1','chr_sgRNA_1','position_sgRNA_1','sgID_2','sgRNA_2','chr_sgRNA_2','position_sgRNA_2', 'sgID_1_2'])
|
121 |
+
for i in range(0,t.shape[0],2):
|
122 |
+
l1=t.iloc[[i]]
|
123 |
+
l1.columns=['sgID_1','sgRNA_1','chr_sgRNA_1','position_sgRNA_1','mutated_guide', 'strand', 'num_mismatch']
|
124 |
+
|
125 |
+
l2=t.iloc[[i+1]]
|
126 |
+
l2.columns=['sgID_2','sgRNA_2','chr_sgRNA_2','position_sgRNA_2','mutated_guide2', 'strand2', 'num_mismatch2']
|
127 |
+
listA_concatenated_match_LR1=pd.concat([l1.reset_index(drop=True),l2.reset_index(drop=True)],axis=1)
|
128 |
+
listA_concatenated_match_LR1=listA_concatenated_match_LR1[['sgID_1','sgRNA_1','chr_sgRNA_1','position_sgRNA_1','sgID_2','sgRNA_2','chr_sgRNA_2','position_sgRNA_2']]
|
129 |
+
listA_concatenated_match_LR1['sgRNA_1']=listA_concatenated_match_LR1['sgRNA_1'].str.slice(0, 20)
|
130 |
+
listA_concatenated_match_LR1['sgRNA_2']=listA_concatenated_match_LR1['sgRNA_2'].str.slice(0, 20)
|
131 |
+
listA_concatenated_match_LR1['sgID_1_2']=listA_concatenated_match_LR1['sgID_1']+"|"+listA_concatenated_match_LR1['sgID_1']
|
132 |
+
dft=dft.append(listA_concatenated_match_LR1)
|
133 |
+
|
134 |
+
return dft
|
135 |
+
|
136 |
+
def get_lists(ref_list,list_found_ref,list_notfound_ref):
|
137 |
+
a_ref=[]
|
138 |
+
for i in range(len(ref_list)):
|
139 |
+
a_ref.append(ref_list.gene.values[i].split('|')[0])
|
140 |
+
a_ref.append(ref_list.gene.values[i].split('|')[1])
|
141 |
+
|
142 |
+
set_found0_ref=[]
|
143 |
+
for i in range(len(a_ref)):
|
144 |
+
set_found0_ref.append(list_found_ref[list_found_ref['gene']==a_ref[i]])
|
145 |
+
list_concatenated_found_ref = pd.concat(set_found0_ref)
|
146 |
+
list_concatenated_match_ref = list_concatenated_found_ref[list_concatenated_found_ref.num_mismatch == 0]
|
147 |
+
#Also remove Alternate loci's data
|
148 |
+
list_concatenated_match_ref = list_concatenated_match_ref[list_concatenated_match_ref['chr'].str.contains('chr')]
|
149 |
+
|
150 |
+
#also create new list with both sgRNAs in one row
|
151 |
+
dft=pd.DataFrame(columns=['gene','ref_guide', 'chr', 'position', 'mutated_guide', 'strand', 'num_mismatch'])
|
152 |
+
if list_concatenated_match_ref.shape[0]>0:
|
153 |
+
t=list_concatenated_match_ref.reset_index(drop=True)
|
154 |
+
#st.table(t)
|
155 |
+
|
156 |
+
##########
|
157 |
+
#check even/odd entries
|
158 |
+
if t.shape[0]==1:
|
159 |
+
t1=t.loc[t.index.repeat(2)].reset_index(drop=True)
|
160 |
+
#st.write(t1)
|
161 |
+
dft=assemble_tbl(t1)
|
162 |
+
|
163 |
+
elif t.shape[0]%2==0: #even
|
164 |
+
dft=assemble_tbl(t)
|
165 |
+
|
166 |
+
else: #odd
|
167 |
+
t1 = pd.DataFrame(columns=['gene','ref_guide', 'chr', 'position', 'mutated_guide', 'strand', 'num_mismatch'])
|
168 |
+
i=0
|
169 |
+
while i <t.shape[0]:
|
170 |
+
if i<t.shape[0]-1:
|
171 |
+
if t.iloc[i]['gene'] == t.iloc[i+1]['gene'] and t.iloc[i]['chr'] == t.iloc[i+1]['chr'] and t.iloc[i]['position'] == t.iloc[i+1]['position']:
|
172 |
+
t1=t1.append(t.iloc[[i]], ignore_index = True)
|
173 |
+
t1=t1.append(t.iloc[[i+1]], ignore_index = True)
|
174 |
+
i=i+2
|
175 |
+
else: #repeat entries
|
176 |
+
t1=t1.append(t.iloc[[i]], ignore_index = True)
|
177 |
+
t1=t1.append(t.iloc[[i]], ignore_index = True)
|
178 |
+
#st.table(t1)
|
179 |
+
i=i+1
|
180 |
+
else:
|
181 |
+
t1=t1.append(t.iloc[[i]], ignore_index = True)
|
182 |
+
t1=t1.append(t.iloc[[i]], ignore_index = True)
|
183 |
+
i=i+1
|
184 |
+
#st.table(t1)
|
185 |
+
|
186 |
+
|
187 |
+
dft=assemble_tbl(t1)
|
188 |
+
list_concatenated_mutated_ref = list_concatenated_found_ref[list_concatenated_found_ref.num_mismatch > 0]
|
189 |
+
list_concatenated_mutated_ref=list_concatenated_mutated_ref.sort_values('position')
|
190 |
+
|
191 |
+
#Also remove Alternate loci's data
|
192 |
+
|
193 |
+
list_concatenated_mutated_ref = list_concatenated_mutated_ref[list_concatenated_mutated_ref['chr'].str.contains('chr')]
|
194 |
+
dft_mut = pd.DataFrame(columns=['sgID_1','sgRNA_1','chr_sgRNA_1','position_sgRNA_1','sgID_2','sgRNA_2','chr_sgRNA_2','position_sgRNA_2', 'sgID_1_2'])
|
195 |
+
|
196 |
+
if list_concatenated_mutated_ref.shape[0]>0:
|
197 |
+
dft_mut = get_mutated_res(list_concatenated_mutated_ref)
|
198 |
+
#check not found
|
199 |
+
seta_notfound0_ref=list_notfound_ref[list_notfound_ref['gene']==a_ref[0]]
|
200 |
+
seta_notfound1_ref=list_notfound_ref[list_notfound_ref['gene']==a_ref[1]]
|
201 |
+
#st.write(seta_notfound0_ref)
|
202 |
+
#st.write(seta_notfound1_ref)
|
203 |
+
#add guideflg1 to return which guide is found
|
204 |
+
guideflg1=0
|
205 |
+
if seta_notfound0_ref.shape[0]>0:
|
206 |
+
guideflg1=2
|
207 |
+
if seta_notfound1_ref.shape[0]>0:
|
208 |
+
guideflg1=1
|
209 |
+
list_concatenated_notfound_ref = pd.concat([seta_notfound0_ref,seta_notfound1_ref])
|
210 |
+
#st.table(dft)
|
211 |
+
#st.table(dft_mut)
|
212 |
+
return dft, dft_mut,list_concatenated_notfound_ref,list_concatenated_match_ref,list_concatenated_mutated_ref,guideflg1
|
213 |
+
###########
|
214 |
+
|
215 |
+
def get_mutated_res(list_concatenated_mutated_ref):
|
216 |
+
#########
|
217 |
+
#if list_concatenated_mutated_ref.shape[0]>0:
|
218 |
+
t=list_concatenated_mutated_ref.reset_index(drop=True)
|
219 |
+
#st.table(t)
|
220 |
+
dft_mut = pd.DataFrame(columns=['sgID_1','sgRNA_1','chr_sgRNA_1','position_sgRNA_1','sgID_2','sgRNA_2','chr_sgRNA_2','position_sgRNA_2', 'sgID_1_2'])
|
221 |
+
c1=['sgID_1','sgRNA_1','chr_sgRNA_1','position_sgRNA_1']
|
222 |
+
c2=['sgID_2','sgRNA_2','chr_sgRNA_2','position_sgRNA_2']#, 'sgID_1_2']
|
223 |
+
#st.table(listA_concatenated_match_ref)
|
224 |
+
#st.write(t.shape[0])
|
225 |
+
tf=0
|
226 |
+
#for i in range(0,t.shape[0],2):
|
227 |
+
for i in range(t.shape[0]):
|
228 |
+
l1=t.iloc[[i]]
|
229 |
+
l1.columns=['sgID_1','sgRNA_1','chr_sgRNA_1','position_sgRNA_1','mutated_guide', 'strand', 'num_mismatch']
|
230 |
+
l2=l1.copy()
|
231 |
+
l2.columns=['sgID_2','sgRNA_2','chr_sgRNA_2','position_sgRNA_2','mutated_guide2', 'strand2', 'num_mismatch2']
|
232 |
+
list_concatenated_mutated_ref1=[]
|
233 |
+
#listA_concatenated_mutated_ref1=pd.concat([l1.reset_index(drop=True),l2.reset_index(drop=True)],axis=1)
|
234 |
+
list_concatenated_mutated_ref1=pd.concat([l1.reset_index(drop=True),l2.reset_index(drop=True)],axis=1)
|
235 |
+
#st.table(listA_concatenated_mutated_ref1)
|
236 |
+
list_concatenated_mutated_ref1=list_concatenated_mutated_ref1[['sgID_1','sgRNA_1','chr_sgRNA_1','position_sgRNA_1','sgID_2','mutated_guide2','chr_sgRNA_2','position_sgRNA_2']]
|
237 |
+
#also change if not leading G
|
238 |
+
list_concatenated_mutated_ref1['sgRNA_1']='G'+list_concatenated_mutated_ref1['sgRNA_1'].str.slice(1, 20)
|
239 |
+
#also change name of mutated_guide2 column
|
240 |
+
list_concatenated_mutated_ref1.columns=['sgID_1','sgRNA_1','chr_sgRNA_1','position_sgRNA_1','sgID_2','sgRNA_2','chr_sgRNA_2','position_sgRNA_2']
|
241 |
+
|
242 |
+
list_concatenated_mutated_ref1['sgRNA_2']='G'+list_concatenated_mutated_ref1['sgRNA_2'].str.slice(1, 20)
|
243 |
+
list_concatenated_mutated_ref1['sgID_1_2']=list_concatenated_mutated_ref1['sgID_1']+"|"+list_concatenated_mutated_ref1['sgID_1']
|
244 |
+
dft_mut=dft_mut.append(list_concatenated_mutated_ref1)
|
245 |
+
return dft_mut
|
246 |
+
|
247 |
+
#########
|
248 |
+
|
249 |
+
#######THIS SECTION ADDED FOR ORDER READY LIST AND REMOVE REPITION FOR NOT_FOUND ENTRUES
|
250 |
+
def get_lists_ol(ref_list,list_found_ref,list_notfound_ref):
|
251 |
+
a_ref=[]
|
252 |
+
for i in range(len(ref_list)):
|
253 |
+
a_ref.append(ref_list.gene.values[i].split('|')[0])
|
254 |
+
a_ref.append(ref_list.gene.values[i].split('|')[1])
|
255 |
+
|
256 |
+
set_found0_ref=[]
|
257 |
+
for i in range(len(a_ref)):
|
258 |
+
set_found0_ref.append(list_found_ref[list_found_ref['gene']==a_ref[i]])
|
259 |
+
list_concatenated_found_ref = pd.concat(set_found0_ref)
|
260 |
+
list_concatenated_match_ref = list_concatenated_found_ref[list_concatenated_found_ref.num_mismatch == 0]
|
261 |
+
#Also remove Alternate loci's data
|
262 |
+
list_concatenated_match_ref = list_concatenated_match_ref[list_concatenated_match_ref['chr'].str.contains('chr')]
|
263 |
+
|
264 |
+
#also create new list with both sgRNAs in one row
|
265 |
+
dft=pd.DataFrame(columns=['gene','ref_guide', 'chr', 'position', 'mutated_guide', 'strand', 'num_mismatch'])
|
266 |
+
if list_concatenated_match_ref.shape[0]>0:
|
267 |
+
t=list_concatenated_match_ref.reset_index(drop=True)
|
268 |
+
#st.table(t)
|
269 |
+
|
270 |
+
##########
|
271 |
+
#check even/odd entries
|
272 |
+
if t.shape[0]==1:
|
273 |
+
t1=t.loc[t.index.repeat(2)].reset_index(drop=True)
|
274 |
+
#st.write(t1)
|
275 |
+
dft=assemble_tbl(t1)
|
276 |
+
|
277 |
+
elif t.shape[0]%2==0: #even
|
278 |
+
dft=assemble_tbl(t)
|
279 |
+
|
280 |
+
else: #odd
|
281 |
+
t1 = pd.DataFrame(columns=['gene','ref_guide', 'chr', 'position', 'mutated_guide', 'strand', 'num_mismatch'])
|
282 |
+
i=0
|
283 |
+
while i <t.shape[0]:
|
284 |
+
if i<t.shape[0]-1:
|
285 |
+
if t.iloc[i]['gene'] == t.iloc[i+1]['gene'] and t.iloc[i]['chr'] == t.iloc[i+1]['chr'] and t.iloc[i]['position'] == t.iloc[i+1]['position']:
|
286 |
+
t1=t1.append(t.iloc[[i]], ignore_index = True)
|
287 |
+
t1=t1.append(t.iloc[[i+1]], ignore_index = True)
|
288 |
+
i=i+2
|
289 |
+
else: #repeat entries
|
290 |
+
t1=t1.append(t.iloc[[i]], ignore_index = True)
|
291 |
+
t1=t1.append(t.iloc[[i]], ignore_index = True)
|
292 |
+
#st.table(t1)
|
293 |
+
i=i+1
|
294 |
+
else:
|
295 |
+
t1=t1.append(t.iloc[[i]], ignore_index = True)
|
296 |
+
t1=t1.append(t.iloc[[i]], ignore_index = True)
|
297 |
+
i=i+1
|
298 |
+
#st.table(t1)
|
299 |
+
|
300 |
+
|
301 |
+
dft=assemble_tbl(t1)
|
302 |
+
list_concatenated_mutated_ref = list_concatenated_found_ref[list_concatenated_found_ref.num_mismatch > 0]
|
303 |
+
list_concatenated_mutated_ref=list_concatenated_mutated_ref.sort_values('position')
|
304 |
+
|
305 |
+
#Also remove Alternate loci's data
|
306 |
+
|
307 |
+
list_concatenated_mutated_ref = list_concatenated_mutated_ref[list_concatenated_mutated_ref['chr'].str.contains('chr')]
|
308 |
+
dft_mut = pd.DataFrame(columns=['sgID_1','sgRNA_1','chr_sgRNA_1','position_sgRNA_1','sgID_2','sgRNA_2','chr_sgRNA_2','position_sgRNA_2', 'sgID_1_2'])
|
309 |
+
if list_concatenated_mutated_ref.shape[0]>0:
|
310 |
+
dft_mut = get_mutated_res(list_concatenated_mutated_ref)
|
311 |
+
#check not found
|
312 |
+
seta_notfound0_ref=list_notfound_ref[list_notfound_ref['gene']==a_ref[0]]
|
313 |
+
seta_notfound1_ref=list_notfound_ref[list_notfound_ref['gene']==a_ref[1]]
|
314 |
+
list_concatenated_notfound_ref = pd.concat([seta_notfound0_ref,seta_notfound1_ref])
|
315 |
+
return dft, dft_mut,list_concatenated_notfound_ref,list_concatenated_match_ref,list_concatenated_mutated_ref
|
316 |
+
###########
|
317 |
+
|
318 |
+
|
319 |
+
#THIS WILL GENERATE ORDER READY TABLE FOR GRCh38
|
320 |
+
#THIS WILL GENERATE ORDER READY TABLE FOR CHM13
|
321 |
+
|
322 |
+
#CHECK IF GUIDE ARE IN NOT FOUND LIST
|
323 |
+
def not_found_check(set12,set34,set56,listA_notfound_lr,listB_notfound_lr,listC_notfound_lr):
|
324 |
+
flg11=0
|
325 |
+
flg12=0
|
326 |
+
flg21=0
|
327 |
+
flg22=0
|
328 |
+
flg31=0
|
329 |
+
flg32=0
|
330 |
+
#st.write(set12.split('|')[1])
|
331 |
+
|
332 |
+
if listA_notfound_lr[listA_notfound_lr['gene']==set12.split('|')[0]].shape[0]>0:
|
333 |
+
flg11=1
|
334 |
+
if listA_notfound_lr[listA_notfound_lr['gene']==set12.split('|')[1]].shape[0]>0:
|
335 |
+
flg12=1
|
336 |
+
if listB_notfound_lr[listB_notfound_lr['gene']==set34.split('|')[0]].shape[0]>0:
|
337 |
+
flg21=1
|
338 |
+
if listB_notfound_lr[listB_notfound_lr['gene']==set34.split('|')[1]].shape[0]>0:
|
339 |
+
flg22=1
|
340 |
+
if listC_notfound_lr[listC_notfound_lr['gene']==set56.split('|')[0]].shape[0]>0:
|
341 |
+
flg31=1
|
342 |
+
if listC_notfound_lr[listC_notfound_lr['gene']==set56.split('|')[1]].shape[0]>0:
|
343 |
+
flg32=1
|
344 |
+
return flg11,flg12,flg21,flg22,flg31,flg32
|
345 |
+
|
346 |
+
def order_ready_tbl_CHM13(set12,set34,set56,listA_found_lr,listA_notfound_lr,listB_found_lr,listB_notfound_lr,listC_found_lr,listC_notfound_lr):
|
347 |
+
dft_order_table=pd.DataFrame(columns=['gene','guide_type','sgID_1', 'sgRNA_1', 'chr_sgRNA_1', 'position_sgRNA_1', 'sgID_2', 'sgRNA_2', 'chr_sgRNA_2', 'position_sgRNA_2', 'sgID_1_2'])
|
348 |
+
|
349 |
+
dft_a = pd.DataFrame(columns=['gene','guide_type','protospacer_A','protospacer_B'])
|
350 |
+
dft_b = pd.DataFrame(columns=['gene','guide_type','protospacer_A','protospacer_B'])
|
351 |
+
dft_c = pd.DataFrame(columns=['gene','guide_type','protospacer_A','protospacer_B'])
|
352 |
+
set12=set12.reset_index(drop = True)
|
353 |
+
set34=set34.reset_index(drop = True)
|
354 |
+
set56=set56.reset_index(drop = True)
|
355 |
+
|
356 |
+
for i in range(set12.shape[0]):
|
357 |
+
gene_n=set12[i].split('_')[0]
|
358 |
+
f=not_found_check(set12[i],set34[i],set56[i],listA_notfound_lr,listB_notfound_lr,listC_notfound_lr)
|
359 |
+
#st.write(f)
|
360 |
+
#st.write(set12[i],set34[i],set56[i])
|
361 |
+
|
362 |
+
#ref_listA=listA[listA['gene']==variant_set.iloc[i]][['guide_type','protospacer_A','protospacer_B','sgID_AB']]
|
363 |
+
ref_listA=listA[listA['sgID_AB']==set12.iloc[i]][['guide_type','protospacer_A','protospacer_B','sgID_AB']]
|
364 |
+
ref_listA = ref_listA[['sgID_AB','guide_type','protospacer_A','protospacer_B']]
|
365 |
+
|
366 |
+
ref_listA.columns=['gene','guide_type','protospacer_A','protospacer_B']
|
367 |
+
resa,res_muta,res_notfounda,list_matcha,list_mutateda,gflga1=get_lists(ref_listA,listA_found_lr,listA_notfound_lr)
|
368 |
+
dft_a=dft_a.append(ref_listA)
|
369 |
+
|
370 |
+
#listb
|
371 |
+
ref_listB=listB[listB['sgID_AB']==set34.iloc[i]][['guide_type','protospacer_A','protospacer_B','sgID_AB']]
|
372 |
+
ref_listB = ref_listB[['sgID_AB','guide_type','protospacer_A','protospacer_B']]
|
373 |
+
|
374 |
+
ref_listB.columns=['gene','guide_type','protospacer_A','protospacer_B']
|
375 |
+
resb,res_mutb,res_notfoundb,list_matchb,list_mutatedb,gflgb1=get_lists(ref_listB,listB_found_lr,listB_notfound_lr)
|
376 |
+
dft_b=dft_b.append(ref_listB)
|
377 |
+
#st.table(not resb.empty)
|
378 |
+
#st.table(res_mutb)
|
379 |
+
#st.table(resb)
|
380 |
+
#listc
|
381 |
+
ref_listC=listC[listC['sgID_AB']==set56.iloc[i]][['guide_type','protospacer_A','protospacer_B','sgID_AB']]
|
382 |
+
ref_listC = ref_listC[['sgID_AB','guide_type','protospacer_A','protospacer_B']]
|
383 |
+
|
384 |
+
ref_listC.columns=['gene','guide_type','protospacer_A','protospacer_B']
|
385 |
+
resc,res_mutc,res_notfoundc,list_matchc,list_mutatedc,gflgc1=get_lists(ref_listC,listC_found_lr,listC_notfound_lr)
|
386 |
+
dft_c=dft_c.append(ref_listC)
|
387 |
+
|
388 |
+
# st.write(set12[i])
|
389 |
+
# st.write(set34[i])
|
390 |
+
# st.write(set56[i])
|
391 |
+
# st.write(f)
|
392 |
+
# st.write(gflga1,gflgb1,gflgc1)
|
393 |
+
if gflga1==0:
|
394 |
+
#Also verigy that both guides are different
|
395 |
+
|
396 |
+
if resa['sgID_1'][0] != resa['sgID_2'][0]:
|
397 |
+
resa['gene']=gene_n
|
398 |
+
resa['guide_type']='1-2'
|
399 |
+
dft_order_table=dft_order_table.append(resa)
|
400 |
+
else: #it is nutation case, so check next
|
401 |
+
if f[2]==0 or f[3] == 0:
|
402 |
+
#st.write('came in 1')
|
403 |
+
if not resb.empty: # and resb['sgID_1'][0] != resb['sgID_2'][0]: #second guide in from setb
|
404 |
+
resa[['sgID_2', 'sgRNA_2', 'chr_sgRNA_2', 'position_sgRNA_2']] = resb[['sgID_1', 'sgRNA_1', 'chr_sgRNA_1', 'position_sgRNA_1']]
|
405 |
+
resa['sgID_1_2'] = resa['sgID_1']+"|"+resa['sgID_2']
|
406 |
+
if f[2]==0:
|
407 |
+
resa['gene']=gene_n
|
408 |
+
resa['guide_type']=str(gflga1)+"-3"
|
409 |
+
dft_order_table=dft_order_table.append(resa)
|
410 |
+
else: # f[2]==0:
|
411 |
+
resa['gene']=gene_n
|
412 |
+
resa['guide_type']=str(gflga1)+"-4"
|
413 |
+
dft_order_table=dft_order_table.append(resa)
|
414 |
+
|
415 |
+
|
416 |
+
elif resa.shape[0] >0: #at least one guide is from seta
|
417 |
+
#if resa['sgID_1'][0] != resa['sgID_2'][0]:
|
418 |
+
if f[2]==0 or f[3] == 0:
|
419 |
+
st.write('came in 1')
|
420 |
+
if not resb.empty: # and resb['sgID_1'][0] != resb['sgID_2'][0]: #second guide in from setb
|
421 |
+
resa[['sgID_2', 'sgRNA_2', 'chr_sgRNA_2', 'position_sgRNA_2']] = resb[['sgID_1', 'sgRNA_1', 'chr_sgRNA_1', 'position_sgRNA_1']]
|
422 |
+
resa['sgID_1_2'] = resa['sgID_1']+"|"+resa['sgID_2']
|
423 |
+
if f[2]==0:
|
424 |
+
resa['gene']=gene_n
|
425 |
+
resa['guide_type']=str(gflga1)+"-3"
|
426 |
+
dft_order_table=dft_order_table.append(resa)
|
427 |
+
else: # f[2]==0:
|
428 |
+
resa['gene']=gene_n
|
429 |
+
resa['guide_type']=str(gflga1)+"-4"
|
430 |
+
dft_order_table=dft_order_table.append(resa)
|
431 |
+
|
432 |
+
elif f[4]==0 or f[5] == 0:
|
433 |
+
#st.write('came in 2')
|
434 |
+
#if resa['sgID_1'][0] != resa['sgID_2'][0]:
|
435 |
+
if not resc.empty: # and resc['sgID_1'][0] != resc['sgID_2'][0]: # resc.shape[0]>0: #second guide is from setc
|
436 |
+
resa[['sgID_2', 'sgRNA_2', 'chr_sgRNA_2', 'position_sgRNA_2']] = resc[['sgID_1', 'sgRNA_1', 'chr_sgRNA_1', 'position_sgRNA_1']]
|
437 |
+
resa['sgID_1_2'] = resa['sgID_1']+"|"+resa['sgID_2']
|
438 |
+
#dft_order_table=dft_order_table.append(resa)
|
439 |
+
if f[4]==0:
|
440 |
+
resa['gene']=gene_n
|
441 |
+
resa['guide_type']=str(gflga1)+"-5"
|
442 |
+
dft_order_table=dft_order_table.append(resa)
|
443 |
+
else: # f[2]==0:
|
444 |
+
resa['gene']=gene_n
|
445 |
+
resa['guide_type']=str(gflga1)+"-6"
|
446 |
+
dft_order_table=dft_order_table.append(resa)
|
447 |
+
|
448 |
+
elif resb.shape[0]>0: #at least one guide
|
449 |
+
#if resb['sgID_1'][0] != resb['sgID_2'][0]:
|
450 |
+
if f[4]==0 and f[5] == 0:
|
451 |
+
resb['gene']=gene_n
|
452 |
+
resb['guide_type']='3-4'
|
453 |
+
dft_order_table=dft_order_table.append(resb)
|
454 |
+
|
455 |
+
elif f[4]==0 or f[5] == 0:
|
456 |
+
#if not resc.empty and resc['sgID_1'][0] != resc['sgID_2'][0]:
|
457 |
+
resb[['sgID_2', 'sgRNA_2', 'chr_sgRNA_2', 'position_sgRNA_2']] = resc[['sgID_1', 'sgRNA_1', 'chr_sgRNA_1', 'position_sgRNA_1']]
|
458 |
+
resb['sgID_1_2'] = resb['sgID_1']+"|"+resb['sgID_2']
|
459 |
+
#dft_order_table=dft_order_table.append(resb)
|
460 |
+
if f[4]==0:
|
461 |
+
resb['gene']=gene_n
|
462 |
+
resb['guide_type']=str(gflgb1+1)+"-5"
|
463 |
+
dft_order_table=dft_order_table.append(resb)
|
464 |
+
else: # f[2]==0:
|
465 |
+
resb['gene']=gene_n
|
466 |
+
resb['guide_type']=str(gflgb1+2)+"-6"
|
467 |
+
dft_order_table=dft_order_table.append(resb)
|
468 |
+
|
469 |
+
elif resc.shape[0]>0: #at least one guide
|
470 |
+
#if f[4]==0 and f[5] == 0:
|
471 |
+
if resc['sgID_1'][0] != resc['sgID_2'][0]:
|
472 |
+
resc['gene']=gene_n
|
473 |
+
resc['guide_type']='5-6'
|
474 |
+
dft_order_table=dft_order_table.append(resc)
|
475 |
+
|
476 |
+
|
477 |
+
if dft_order_table.shape[0]>0:
|
478 |
+
st.write('Order Ready **CHM13** guides List')
|
479 |
+
tbl_disp(dft_order_table,'select_genes','SetA_CHM13',5)
|
480 |
+
else:
|
481 |
+
st.write('**No guides found in ListA, ListB and ListC**')
|
482 |
+
#st.table(dft_order_table)
|
483 |
+
|
484 |
+
#def get_notfound():
|
485 |
+
|
486 |
+
|
487 |
+
cwd=os.getcwd()+'/'+'data/'
|
488 |
+
|
489 |
+
|
490 |
+
listA = pd.read_csv(cwd+"guides_a_new.csv",index_col=False)
|
491 |
+
|
492 |
+
listB = pd.read_csv(cwd+"guides_b_new.csv",index_col=False)
|
493 |
+
listC = pd.read_csv(cwd+"guides_c_new.csv",index_col=False)
|
494 |
+
|
495 |
+
lista_sz=listA.shape[0]
|
496 |
+
listb_sz=listB.shape[0]
|
497 |
+
listc_sz=listC.shape[0]
|
498 |
+
|
499 |
+
|
500 |
+
variantsa1=listA['gene'].unique()
|
501 |
+
variantsb1=listB['gene'].unique()
|
502 |
+
variantsc1=listC['gene'].unique()
|
503 |
+
|
504 |
+
con = np.concatenate((variantsa1, variantsb1,variantsc1))
|
505 |
+
|
506 |
+
|
507 |
+
#st.write(type(variantsc1))
|
508 |
+
variants_s=sorted(np.unique(con))
|
509 |
+
#st.write(len(variants_s))
|
510 |
+
#also get names for non-targetting guides
|
511 |
+
|
512 |
+
|
513 |
+
#Also read GRCh38 and LR guides for stea
|
514 |
+
listA_found_ref = pd.read_csv(cwd+"seta_found_ref1.csv",index_col=False)
|
515 |
+
|
516 |
+
|
517 |
+
|
518 |
+
|
519 |
+
|
520 |
+
|
521 |
+
lsita_ref_found_sz=listA_found_ref.shape[0]
|
522 |
+
#remove # from chr# #
|
523 |
+
listA_found_ref['chr'] = [x.split(' ')[-0] for x in listA_found_ref['chr']]
|
524 |
+
listA_found_ref.rename(columns = {'strnad':'strand'}, inplace = True)
|
525 |
+
listA_notfound_ref = pd.read_csv(cwd+"seta_notfound_ref1.csv",index_col=False)
|
526 |
+
|
527 |
+
lsita_ref_notfound_sz=listA_notfound_ref.shape[0]
|
528 |
+
|
529 |
+
|
530 |
+
listA_found_lr = pd.read_csv(cwd+"seta_found_LR1.csv",index_col=False)
|
531 |
+
lsita_lr_found_sz=listA_found_lr.shape[0]
|
532 |
+
listA_found_lr.rename(columns = {'strnad':'strand'}, inplace = True)
|
533 |
+
listA_notfound_lr = pd.read_csv(cwd+"seta_notfound_LR1.csv",index_col=False)
|
534 |
+
lsita_lr_notfound_sz=listA_notfound_lr.shape[0]
|
535 |
+
|
536 |
+
#Also read GRCh38 and LR guides for set b
|
537 |
+
listB_found_ref = pd.read_csv(cwd+"setb_found_ref1.csv",index_col=False)
|
538 |
+
lsitb_ref_found_sz=listB_found_ref.shape[0]
|
539 |
+
#remove # from chr# #
|
540 |
+
listB_found_ref['chr'] = [x.split(' ')[-0] for x in listB_found_ref['chr']]
|
541 |
+
listB_found_ref.rename(columns = {'strnad':'strand'}, inplace = True)
|
542 |
+
listB_notfound_ref = pd.read_csv(cwd+"setb_notfound_ref1.csv",index_col=False)
|
543 |
+
lsitb_ref_notfound_sz=listB_notfound_ref.shape[0]
|
544 |
+
|
545 |
+
|
546 |
+
listB_found_lr = pd.read_csv(cwd+"setb_found_LR1.csv",index_col=False)
|
547 |
+
lsitb_lr_found_sz=listB_found_lr.shape[0]
|
548 |
+
listB_found_lr.rename(columns = {'strnad':'strand'}, inplace = True)
|
549 |
+
listB_notfound_lr = pd.read_csv(cwd+"setb_notfound_LR1.csv",index_col=False)
|
550 |
+
lsitb_lr_notfound_sz=listB_notfound_lr.shape[0]
|
551 |
+
|
552 |
+
#Also read GRCh38 and LR guides for set c
|
553 |
+
listC_found_ref = pd.read_csv(cwd+"setc_found_ref1.csv",index_col=False)
|
554 |
+
lsitc_ref_found_sz=listC_found_ref.shape[0]
|
555 |
+
#remove # from chr# #
|
556 |
+
listC_found_ref['chr'] = [x.split(' ')[-0] for x in listC_found_ref['chr']]
|
557 |
+
listC_found_ref.rename(columns = {'strnad':'strand'}, inplace = True)
|
558 |
+
listC_notfound_ref = pd.read_csv(cwd+"setc_notfound_ref1.csv",index_col=False)
|
559 |
+
lsitc_ref_notfound_sz=listC_notfound_ref.shape[0]
|
560 |
+
|
561 |
+
listC_found_lr = pd.read_csv(cwd+"setc_found_LR1.csv",index_col=False)
|
562 |
+
lsitc_lr_found_sz=listC_found_lr.shape[0]
|
563 |
+
listC_found_lr.rename(columns = {'strnad':'strand'}, inplace = True)
|
564 |
+
listC_notfound_lr = pd.read_csv(cwd+"setc_notfound_LR1.csv",index_col=False)
|
565 |
+
lsitc_lr_notfound_sz=listC_notfound_lr.shape[0]
|
566 |
+
#also load all mismatched except non-targe guides
|
567 |
+
#listA_notfound_lr = pd.read_csv(cwd+"setc_notfound_LR1.csv",index_col=False) seta_all_notmatched_table.csv
|
568 |
+
|
569 |
+
st.title('Long Read Guides Search')
|
570 |
+
#st.markdown('**Please select an option from the sidebar**')
|
571 |
+
|
572 |
+
#st.write(variants)
|
573 |
+
|
574 |
+
|
575 |
+
Calc = st.sidebar.radio(
|
576 |
+
"",
|
577 |
+
('ReadME', 'Single/Multiple Guides','All','Not_Found'))
|
578 |
+
|
579 |
+
|
580 |
+
if Calc == 'ReadME':
|
581 |
+
expander = st.expander("How to use this app")
|
582 |
+
#st.header('How to use this app')
|
583 |
+
expander.markdown('Please select **Single Gene** OR **Multiple Genes** Menue checkbox from the sidebar')
|
584 |
+
expander.markdown('Select a Gene (from genes dropdown list) OR Multiple genes (from table)')
|
585 |
+
expander.markdown('A table showing all reference gudies from three LISTS will appear in the main panel. **Please not some of the genes (for example A1BG and GJB7) have multiple guide pairs and all of these are selected.**')
|
586 |
+
expander.markdown('To see results for each of the selected reference guide from ListA, ListB and ListC, Please select respective checkbox')
|
587 |
+
expander.markdown('Results are shown as two tables, **Matched** and **Mutated** guides tables and **NOT FOUND** table if guides are not found in GRCh38 and LR reference fasta files')
|
588 |
+
expander.markdown('**Mutated** guides table shows the genomic postion in GRCh38 and LR Fasta file along other fields. **If a guide is found in GRCh38 but not in LR fasta, then corresponding columns will be NA**')
|
589 |
+
expander.markdown('**Mutated** guides table shows the genomic postion in GRCh38 and LR Fasta file along other fields. **If a guide is found in GRCh38 but not in LR fasta, then corresponding columns will be NA**')
|
590 |
+
|
591 |
+
expander1 = st.expander('Introduction')
|
592 |
+
|
593 |
+
expander1.markdown(
|
594 |
+
""" This app helps navigate all probable genomic **miss-matched/Mutations (upto 2 bp)** for a given sgRNA (from 3 lists of CRISPRi dual sgRNA libraries) in GRCh38 reference fasta and a Reference fasta generated from BAM generated against KOLF2.1J longread data.
|
595 |
+
"""
|
596 |
+
)
|
597 |
+
expander1.markdown('Merged bam file was converted to fasta file using following steps:')
|
598 |
+
expander1.markdown('- samtools mpileup to generate bcf file')
|
599 |
+
expander1.markdown('- bcftools to generate vcf file')
|
600 |
+
expander1.markdown('- bcftools consensus to generate fasta file')
|
601 |
+
expander1.markdown('A GPU based [Cas-OFFinder](http://www.rgenome.net/cas-offinder/) tool was used to find off-target sequences (upto 2 miss-matched) for each geiven reference guide against GRCh38 and LR fasta references.')
|
602 |
+
|
603 |
+
elif Calc=='Single/Multiple Guides':
|
604 |
+
flg_a_fount=0
|
605 |
+
flg_b_fount=0
|
606 |
+
flg_c_fount=0
|
607 |
+
#st.write('**General Stats:**')
|
608 |
+
#st.write('**GRCh38 Stats: Guides Found: **'+str(lsita_ref_found_sz)+"/"+str(lista_sz))
|
609 |
+
with st.form(key='columns_in_form'):
|
610 |
+
c2, c3 = st.columns(2)
|
611 |
+
with c2:
|
612 |
+
multi_genes = st.multiselect(
|
613 |
+
'Please select genes list to start processing',
|
614 |
+
variants_s)
|
615 |
+
Updated=st.form_submit_button(label = 'Update')
|
616 |
+
listA_concatenated_orig = pd.DataFrame(columns=['gene','guide_type','protospacer_A','protospacer_B'])
|
617 |
+
reflistA_concatenated = pd.DataFrame(columns=['gene','guide_type','protospacer_A','protospacer_B'])
|
618 |
+
reflistB_concatenated = pd.DataFrame(columns=['gene','guide_type','protospacer_A','protospacer_B'])
|
619 |
+
reflistC_concatenated = pd.DataFrame(columns=['gene','guide_type','protospacer_A','protospacer_B'])
|
620 |
+
for variant in multi_genes:
|
621 |
+
ref_listA=listA[listA['gene']==variant][['guide_type','protospacer_A','protospacer_B','sgID_AB']]
|
622 |
+
ref_listA = ref_listA[['sgID_AB','guide_type','protospacer_A','protospacer_B']]
|
623 |
+
ref_listA.columns=['gene','guide_type','protospacer_A','protospacer_B']
|
624 |
+
reflistA_concatenated=pd.concat([reflistA_concatenated,ref_listA])
|
625 |
+
|
626 |
+
ref_listB=listB[listB['gene']==variant][['guide_type','protospacer_A','protospacer_B','sgID_AB']]
|
627 |
+
ref_listB = ref_listB[['sgID_AB','guide_type','protospacer_A','protospacer_B']]
|
628 |
+
ref_listB.columns=['gene','guide_type','protospacer_A','protospacer_B']
|
629 |
+
reflistB_concatenated=pd.concat([reflistB_concatenated,ref_listB])
|
630 |
+
|
631 |
+
ref_listC=listC[listC['gene']==variant][['guide_type','protospacer_A','protospacer_B','sgID_AB']]
|
632 |
+
ref_listC = ref_listC[['sgID_AB','guide_type','protospacer_A','protospacer_B']]
|
633 |
+
ref_listC.columns=['gene','guide_type','protospacer_A','protospacer_B']
|
634 |
+
reflistC_concatenated=pd.concat([reflistC_concatenated,ref_listC])
|
635 |
+
listA_concatenated_orig = pd.concat([listA_concatenated_orig,ref_listA,ref_listB,ref_listC])
|
636 |
+
|
637 |
+
if listA_concatenated_orig.shape[0] > 0:
|
638 |
+
|
639 |
+
#st.markdown(table_edit,unsafe_allow_html=True)
|
640 |
+
st.write('**Input** Guides (all 6 from 3 sets).')
|
641 |
+
st.write('**Please Select Guides common to ALL 3 Lists to procede further Processing**')
|
642 |
+
st.markdown(caution_genes,unsafe_allow_html=True)
|
643 |
+
|
644 |
+
with st.form(key='columns_in_form_a'):
|
645 |
+
c2, c3 = st.columns(2)
|
646 |
+
with c2:
|
647 |
+
get_table_order=tbl_disp(listA_concatenated_orig,'variant','ref_guides',111,0)
|
648 |
+
#multi_genes = st.multiselect(
|
649 |
+
#'Please select genes list to start processing',
|
650 |
+
#variants_s)
|
651 |
+
Updated1=st.form_submit_button(label = 'Generate Order Ready Table')
|
652 |
+
|
653 |
+
#get_table_order=tbl_disp(listA_concatenated_orig,'variant','ref_guides',1,0)
|
654 |
+
|
655 |
+
|
656 |
+
|
657 |
+
|
658 |
+
if not isinstance(get_table_order, type(None)): # and Updated1:# and get_table_order.shape[0]>0:
|
659 |
+
#if not isinstance(get_table_order, type(None)):
|
660 |
+
variant_set12=get_table_order[get_table_order['guide_type']=='1-2']['gene']
|
661 |
+
variant_set34=get_table_order[get_table_order['guide_type']=='3-4']['gene']
|
662 |
+
variant_set56=get_table_order[get_table_order['guide_type']=='5-6']['gene']
|
663 |
+
#st.table(variant_set12)
|
664 |
+
#st.write(type(variant_set12))
|
665 |
+
#if not variant_set12.equals(variant_set34):
|
666 |
+
# st.write('**Please select Identical Genes From List A and B**')
|
667 |
+
if variant_set12.shape[0]==variant_set34.shape[0]==variant_set56.shape[0]:
|
668 |
+
#########Here we call order ready table
|
669 |
+
#order_ready_tbl_GRCh38(variant_set12,variant_set34,variant_set56)
|
670 |
+
order_ready_tbl_CHM13(variant_set12,variant_set34,variant_set56,listA_found_lr,listA_notfound_lr,listB_found_lr,listB_notfound_lr,listC_found_lr,listC_notfound_lr)
|
671 |
+
########END ORDER READY TABLE
|
672 |
+
|
673 |
+
|
674 |
+
elif variant_set12.shape[0]!=variant_set34.shape[0]:
|
675 |
+
st.markdown("""**<span style='color:red'>SetA and SetB</span> guides are not same, Please correct the problem and re-run**""",unsafe_allow_html=True)
|
676 |
+
elif variant_set12.shape[0]!=variant_set56.shape[0]:
|
677 |
+
st.markdown("""**<span style='color:red'>SetA and SetC</span> guides are not same, Please correct the problem and re-run**""",unsafe_allow_html=True)
|
678 |
+
elif variant_set34.shape[0]!=variant_set56.shape[0]:
|
679 |
+
st.markdown("""**<span style='color:red'>SetB and SetC</span> guides are not same, Please correct the problem and re-run**""",unsafe_allow_html=True)
|
680 |
+
|
681 |
+
else:
|
682 |
+
st.markdown("""**<span style='color:red'>Probably Mixed guides are selected from three lists, Please correct the problem and re-run</span>**""",unsafe_allow_html=True)
|
683 |
+
|
684 |
+
#Now BUILD Order Ready List
|
685 |
+
#if dft_lr_resa.shape[0] >0 and dft_lr_resb.shape[0] >0 and dft_lr_resc.shape[0] >0:
|
686 |
+
# for sgrna in dft_lr_resa
|
687 |
+
else:
|
688 |
+
st.write('**Please select guides and Press Update Button to Begin Processing**')
|
689 |
+
|
690 |
+
|
691 |
+
|
692 |
+
ListARes = st.checkbox('Results For SetA',key=300)
|
693 |
+
if ListARes:# and not isinstance(get_table, type(None)):#get_table!=None:
|
694 |
+
#if ListARes and get_table.shape[0]>0:
|
695 |
+
st.write('**Please select Guides From Table Below to processes from ListA**')
|
696 |
+
get_table=tbl_disp(reflistA_concatenated,variant,'ref_guides',2,0)
|
697 |
+
if not isinstance(get_table, type(None)):
|
698 |
+
#variant_set=get_table[get_table['guide_type']=='1-2']['gene']
|
699 |
+
variant_set=get_table['gene']
|
700 |
+
dft_a = pd.DataFrame(columns=['gene','guide_type','protospacer_A','protospacer_B'])
|
701 |
+
dft_resa=pd.DataFrame(columns=['sgID_1', 'sgRNA_1', 'chr_sgRNA_1', 'position_sgRNA_1', 'sgID_2', 'sgRNA_2', 'chr_sgRNA_2', 'position_sgRNA_2', 'sgID_1_2'])
|
702 |
+
dft_res_muta=pd.DataFrame(columns=['sgID_1', 'sgRNA_1', 'chr_sgRNA_1', 'position_sgRNA_1', 'sgID_2', 'sgRNA_2', 'chr_sgRNA_2', 'position_sgRNA_2', 'sgID_1_2'])
|
703 |
+
dft_notfounda=pd.DataFrame(columns=['gene','ref_guide'])
|
704 |
+
df_matched_guides_ref = pd.DataFrame(columns=['gene','ref_guide', 'chr', 'position', 'mutated_guide', 'strand', 'num_mismatch'])
|
705 |
+
df_mutated_guides_ref = pd.DataFrame(columns=['gene','ref_guide', 'chr', 'position', 'mutated_guide', 'strand', 'num_mismatch'])
|
706 |
+
#CHECK FOR GRCh38
|
707 |
+
for i in range(variant_set.shape[0]):
|
708 |
+
#ref_listA=listA[listA['sgID_AB']==variant_set.iloc[i]['gene']][['guide_type','protospacer_A','protospacer_B','sgID_AB']]
|
709 |
+
ref_listA=listA[listA['sgID_AB']==variant_set.iloc[i]][['guide_type','protospacer_A','protospacer_B','sgID_AB']]
|
710 |
+
ref_listA = ref_listA[['sgID_AB','guide_type','protospacer_A','protospacer_B']]
|
711 |
+
|
712 |
+
ref_listA.columns=['gene','guide_type','protospacer_A','protospacer_B']
|
713 |
+
res,res_mut,res_notfound,list_match,list_mutated,gflga1=get_lists(ref_listA,listA_found_ref,listA_notfound_ref)
|
714 |
+
dft_a=dft_a.append(ref_listA)
|
715 |
+
if res.shape[0]>0:
|
716 |
+
dft_resa=dft_resa.append(res)
|
717 |
+
if res_mut.shape[0]>0:
|
718 |
+
dft_res_muta=dft_res_muta.append(res_mut)
|
719 |
+
if res_notfound.shape[0]>0:
|
720 |
+
dft_notfounda= dft_notfounda.append(res_notfound)
|
721 |
+
if list_match.shape[0]>0:
|
722 |
+
df_matched_guides_ref= df_matched_guides_ref.append(list_match)
|
723 |
+
if list_mutated.shape[0]>0:
|
724 |
+
df_mutated_guides_ref= df_mutated_guides_ref.append(list_mutated)
|
725 |
+
|
726 |
+
#st.write('Selected Reference Guides for **Set A**')
|
727 |
+
#tbl_disp(dft_a,'All','ReferenceGuides',0)
|
728 |
+
if dft_resa.shape[0]>0:
|
729 |
+
st.write('Matched to **GRCh38** Reference Guides for **Set A**')
|
730 |
+
tbl_disp(dft_resa,'select_genes','SetA_GRCh38',3)
|
731 |
+
elif dft_res_muta.shape[0]>0:
|
732 |
+
st.write('Mutated to **GRCh38** Reference Guides for **Set A**')
|
733 |
+
st.markdown(caution1,unsafe_allow_html=True)
|
734 |
+
tbl_disp(dft_res_muta,'select_genes','SetA_Mutated_GRCh38',4)
|
735 |
+
if dft_notfounda.shape[0]>0:
|
736 |
+
st.write('**SetA Guides Not Found in GRCh38**')
|
737 |
+
#tbl_disp(dft_notfound,'select_genes','SetA_Notfound_GRCh38')
|
738 |
+
st.table(dft_notfounda)
|
739 |
+
#Now CHECK FOR CHM13
|
740 |
+
dft_a = pd.DataFrame(columns=['gene','guide_type','protospacer_A','protospacer_B'])
|
741 |
+
dft_lr_resa=pd.DataFrame(columns=['sgID_1', 'sgRNA_1', 'chr_sgRNA_1', 'position_sgRNA_1', 'sgID_2', 'sgRNA_2', 'chr_sgRNA_2', 'position_sgRNA_2', 'sgID_1_2'])
|
742 |
+
dft_lr_res_muta=pd.DataFrame(columns=['sgID_1', 'sgRNA_1', 'chr_sgRNA_1', 'position_sgRNA_1', 'sgID_2', 'sgRNA_2', 'chr_sgRNA_2', 'position_sgRNA_2', 'sgID_1_2'])
|
743 |
+
dft_lr_notfounda=pd.DataFrame(columns=['gene','ref_guide'])
|
744 |
+
df_matched_guides_lr = pd.DataFrame(columns=['gene','ref_guide', 'chr', 'position', 'mutated_guide', 'strand', 'num_mismatch'])
|
745 |
+
df_mutated_guides_lr = pd.DataFrame(columns=['gene','ref_guide', 'chr', 'position', 'mutated_guide', 'strand', 'num_mismatch'])
|
746 |
+
|
747 |
+
for i in range(variant_set.shape[0]):
|
748 |
+
#ref_listA=listA[listA['gene']==variant_set.iloc[i]][['guide_type','protospacer_A','protospacer_B','sgID_AB']]
|
749 |
+
ref_listA=listA[listA['sgID_AB']==variant_set.iloc[i]][['guide_type','protospacer_A','protospacer_B','sgID_AB']]
|
750 |
+
ref_listA = ref_listA[['sgID_AB','guide_type','protospacer_A','protospacer_B']]
|
751 |
+
|
752 |
+
ref_listA.columns=['gene','guide_type','protospacer_A','protospacer_B']
|
753 |
+
res,res_mut,res_notfound,list_match,list_mutated,gflga1=get_lists(ref_listA,listA_found_lr,listA_notfound_lr)
|
754 |
+
dft_a=dft_a.append(ref_listA)
|
755 |
+
if res.shape[0]>0:
|
756 |
+
dft_lr_resa=dft_lr_resa.append(res)
|
757 |
+
if res_mut.shape[0]>0:
|
758 |
+
dft_lr_res_muta=dft_lr_res_muta.append(res_mut)
|
759 |
+
if res_notfound.shape[0]>0:
|
760 |
+
dft_lr_notfounda= dft_lr_notfounda.append(res_notfound)
|
761 |
+
if list_match.shape[0]>0:
|
762 |
+
df_matched_guides_lr= df_matched_guides_lr.append(list_match)
|
763 |
+
if list_mutated.shape[0]>0:
|
764 |
+
df_mutated_guides_lr= df_mutated_guides_lr.append(list_mutated)
|
765 |
+
|
766 |
+
if dft_lr_resa.shape[0]>0:
|
767 |
+
st.write('Matched to **CHM13** Reference Guides for **Set A**')
|
768 |
+
tbl_disp(dft_lr_resa,'select_genes','SetA_CHM13',5)
|
769 |
+
elif dft_lr_res_muta.shape[0]>0:
|
770 |
+
st.write('Mutated to **CHM13** Reference Guides for **Set A**')
|
771 |
+
st.markdown(caution1,unsafe_allow_html=True)
|
772 |
+
tbl_disp(dft_lr_res_muta,'select_genes','SetA_Mutated_CHM13',6)
|
773 |
+
if dft_lr_notfounda.shape[0]>0:
|
774 |
+
st.write('**SetA Guides Not Found in CHM13**')
|
775 |
+
st.table(dft_lr_notfounda)
|
776 |
+
#NOW MERGE FROM GRCh38 and LR
|
777 |
+
merged_mutated_set=pd.merge(df_mutated_guides_ref,df_mutated_guides_lr, how="outer",on=["gene","ref_guide","chr"],suffixes=["_GRCh38",'_LR'])
|
778 |
+
merged_mutated_set = merged_mutated_set[['gene','ref_guide','chr','position_GRCh38','position_LR','strand_GRCh38','strand_LR','mutated_guide_GRCh38','mutated_guide_LR','num_mismatch_GRCh38','num_mismatch_LR']]
|
779 |
+
merged_match_set=pd.merge(df_matched_guides_ref,df_matched_guides_lr, how="outer",on=["gene","ref_guide","chr"],suffixes=["_GRCh38",'_LR'])
|
780 |
+
merged_match_set = merged_match_set[['gene','ref_guide','chr','position_GRCh38','position_LR','strand_GRCh38','strand_LR','mutated_guide_GRCh38','mutated_guide_LR','num_mismatch_GRCh38','num_mismatch_LR']]
|
781 |
+
if merged_match_set.shape[0]>0:
|
782 |
+
#st.write('**Matched** Guides for **Set C** (*Each guide sequence has a trailing NGG*)')
|
783 |
+
st.write('**Matched** Guides for **Set A** to both **GRCh38 and CHM13 references** (*Each guide sequence has a trailing NGG* and **leading G even if it is a missmatch**)')
|
784 |
+
tbl_disp(merged_match_set,'select_genes','SetA_Matched_GRCh38_CHM13',7,0)
|
785 |
+
|
786 |
+
#st.table(merged_match_seta)
|
787 |
+
elif merged_mutated_set.shape[0]>0:
|
788 |
+
#st.write('**Missmatched** Guides **Set C** (*Each guide sequence has a trailing NGG*)')
|
789 |
+
st.write('**Mutated** Guides for **Set A** to both **GRCh38 and CHM13 references** (*Each guide sequence has a trailing NGG* and **leading G even if it is a missmatch**)')
|
790 |
+
|
791 |
+
tbl_disp(merged_mutated_set,'select_genes','SetA_Mutated_GRCh38_CHM13',8,0)
|
792 |
+
elif ListARes:
|
793 |
+
st.write("**Please select genes from the above table to begin**")
|
794 |
+
|
795 |
+
ListBRes = st.checkbox('Results For SetB',key=40)
|
796 |
+
if ListBRes: # and not isinstance(get_table, type(None)):#get_table!=None:
|
797 |
+
st.write('**Please select Guides From Table Below to processes from ListB**')
|
798 |
+
get_table=tbl_disp(reflistB_concatenated,variant,'ref_guides',9,0)
|
799 |
+
if not isinstance(get_table, type(None)):
|
800 |
+
#variant_set=get_table[['gene']]
|
801 |
+
variant_set=get_table['gene']
|
802 |
+
dft_b = pd.DataFrame(columns=['gene','guide_type','protospacer_A','protospacer_B'])
|
803 |
+
dft_resb=pd.DataFrame(columns=['sgID_1', 'sgRNA_1', 'chr_sgRNA_1', 'position_sgRNA_1', 'sgID_2', 'sgRNA_2', 'chr_sgRNA_2', 'position_sgRNA_2', 'sgID_1_2'])
|
804 |
+
dft_res_mutb=pd.DataFrame(columns=['sgID_1', 'sgRNA_1', 'chr_sgRNA_1', 'position_sgRNA_1', 'sgID_2', 'sgRNA_2', 'chr_sgRNA_2', 'position_sgRNA_2', 'sgID_1_2'])
|
805 |
+
dft_notfoundb=pd.DataFrame(columns=['gene','ref_guide'])
|
806 |
+
df_matched_guides_ref = pd.DataFrame(columns=['gene','ref_guide', 'chr', 'position', 'mutated_guide', 'strand', 'num_mismatch'])
|
807 |
+
df_mutated_guides_ref = pd.DataFrame(columns=['gene','ref_guide', 'chr', 'position', 'mutated_guide', 'strand', 'num_mismatch'])
|
808 |
+
#CHECK FOR GRCh38
|
809 |
+
for i in range(variant_set.shape[0]):
|
810 |
+
#ref_listB=listB[listB['gene']==variant_set.iloc[i]['gene']][['guide_type','protospacer_A','protospacer_B','sgID_AB']]
|
811 |
+
ref_listB=listB[listB['sgID_AB']==variant_set.iloc[i]][['guide_type','protospacer_A','protospacer_B','sgID_AB']]
|
812 |
+
ref_listB =ref_listB[['sgID_AB','guide_type','protospacer_A','protospacer_B']]
|
813 |
+
|
814 |
+
ref_listB.columns=['gene','guide_type','protospacer_A','protospacer_B']
|
815 |
+
res,res_mut,res_notfound,list_match,list_mutated,gflgb1=get_lists(ref_listB,listB_found_ref,listB_notfound_ref)
|
816 |
+
dft_b=dft_b.append(ref_listB)
|
817 |
+
if res.shape[0]>0:
|
818 |
+
dft_resb=dft_resb.append(res)
|
819 |
+
if res_mut.shape[0]>0:
|
820 |
+
dft_res_mutb=dft_res_mutb.append(res_mut)
|
821 |
+
if res_notfound.shape[0]>0:
|
822 |
+
dft_notfoundb= dft_notfoundb.append(res_notfound)
|
823 |
+
if list_match.shape[0]>0:
|
824 |
+
df_matched_guides_ref= df_matched_guides_ref.append(list_match)
|
825 |
+
if list_mutated.shape[0]>0:
|
826 |
+
df_mutated_guides_ref= df_mutated_guides_ref.append(list_mutated)
|
827 |
+
|
828 |
+
#st.write('Selected Reference Guides for **Set B**')
|
829 |
+
#tbl_disp(dft_b,'All','ReferenceGuides',0)
|
830 |
+
if dft_resb.shape[0]>0:
|
831 |
+
st.write('Matched to **GRCh38** Reference Guides for **Set B**')
|
832 |
+
tbl_disp(dft_resb,'select_genes','SetB_GRCh38',10)
|
833 |
+
elif dft_res_mutb.shape[0]>0:
|
834 |
+
st.write('Mutated to **GRCh38** Reference Guides for **Set B**')
|
835 |
+
st.markdown(caution1,unsafe_allow_html=True)
|
836 |
+
tbl_disp(dft_res_mutb,'select_genes','SetB_Mutated_GRCh38',11)
|
837 |
+
if dft_notfoundb.shape[0]>0:
|
838 |
+
st.write('**SetB Guides Not Found in GRCh38**')
|
839 |
+
#tbl_disp(dft_notfound,'select_genes','SetA_Notfound_GRCh38')
|
840 |
+
st.table(dft_notfoundb)
|
841 |
+
|
842 |
+
#Now CHECK FOR CHM13
|
843 |
+
dft_b = pd.DataFrame(columns=['gene','guide_type','protospacer_A','protospacer_B'])
|
844 |
+
dft_lr_resb=pd.DataFrame(columns=['sgID_1', 'sgRNA_1', 'chr_sgRNA_1', 'position_sgRNA_1', 'sgID_2', 'sgRNA_2', 'chr_sgRNA_2', 'position_sgRNA_2', 'sgID_1_2'])
|
845 |
+
dft_lr_res_mutb=pd.DataFrame(columns=['sgID_1', 'sgRNA_1', 'chr_sgRNA_1', 'position_sgRNA_1', 'sgID_2', 'sgRNA_2', 'chr_sgRNA_2', 'position_sgRNA_2', 'sgID_1_2'])
|
846 |
+
dft_lr_notfoundb=pd.DataFrame(columns=['gene','ref_guide'])
|
847 |
+
df_matched_guides_lr = pd.DataFrame(columns=['gene','ref_guide', 'chr', 'position', 'mutated_guide', 'strand', 'num_mismatch'])
|
848 |
+
df_mutated_guides_lr = pd.DataFrame(columns=['gene','ref_guide', 'chr', 'position', 'mutated_guide', 'strand', 'num_mismatch'])
|
849 |
+
|
850 |
+
for i in range(variant_set.shape[0]):
|
851 |
+
#ref_listB=listB[listB['gene']==variant_set.iloc[i]['gene']][['guide_type','protospacer_A','protospacer_B','sgID_AB']]
|
852 |
+
ref_listB=listB[listB['sgID_AB']==variant_set.iloc[i]][['guide_type','protospacer_A','protospacer_B','sgID_AB']]
|
853 |
+
ref_listB=ref_listB[['sgID_AB','guide_type','protospacer_A','protospacer_B']]
|
854 |
+
|
855 |
+
ref_listB.columns=['gene','guide_type','protospacer_A','protospacer_B']
|
856 |
+
res,res_mut,res_notfound,list_match,list_mutated,gflgb1=get_lists(ref_listB,listB_found_lr,listB_notfound_lr)
|
857 |
+
dft_b=dft_b.append(ref_listB)
|
858 |
+
if res.shape[0]>0:
|
859 |
+
dft_lr_resb=dft_lr_resb.append(res)
|
860 |
+
if res_mut.shape[0]>0:
|
861 |
+
dft_lr_res_mutb=dft_lr_res_mutb.append(res_mut)
|
862 |
+
if res_notfound.shape[0]>0:
|
863 |
+
dft_lr_notfoundb= dft_lr_notfoundb.append(res_notfound)
|
864 |
+
if list_match.shape[0]>0:
|
865 |
+
df_matched_guides_lr= df_matched_guides_lr.append(list_match)
|
866 |
+
if list_mutated.shape[0]>0:
|
867 |
+
df_mutated_guides_lr= df_mutated_guides_lr.append(list_mutated)
|
868 |
+
|
869 |
+
if dft_lr_resb.shape[0]>0:
|
870 |
+
st.write('Matched to **CHM13** Reference Guides for **Set B**')
|
871 |
+
tbl_disp(dft_lr_resb,'select_genes','SetB_CHM13',12)
|
872 |
+
elif dft_lr_res_mutb.shape[0]>0:
|
873 |
+
st.write('Mutated to **CHM13** Reference Guides for **Set B**')
|
874 |
+
st.markdown(caution1,unsafe_allow_html=True)
|
875 |
+
tbl_disp(dft_lr_res_mutb,'select_genes','SetB_Mutated_CHM13',13)
|
876 |
+
if dft_lr_notfoundb.shape[0]>0:
|
877 |
+
st.write('**SetB Guides Not Found in CHM13**')
|
878 |
+
st.table(dft_lr_notfoundb)
|
879 |
+
#NOW MERGE FROM GRCh38 and LR
|
880 |
+
merged_mutated_set=pd.merge(df_mutated_guides_ref,df_mutated_guides_lr, how="outer",on=["gene","ref_guide","chr"],suffixes=["_GRCh38",'_LR'])
|
881 |
+
merged_mutated_set = merged_mutated_set[['gene','ref_guide','chr','position_GRCh38','position_LR','strand_GRCh38','strand_LR','mutated_guide_GRCh38','mutated_guide_LR','num_mismatch_GRCh38','num_mismatch_LR']]
|
882 |
+
merged_match_set=pd.merge(df_matched_guides_ref,df_matched_guides_lr, how="outer",on=["gene","ref_guide","chr"],suffixes=["_GRCh38",'_LR'])
|
883 |
+
merged_match_set = merged_match_set[['gene','ref_guide','chr','position_GRCh38','position_LR','strand_GRCh38','strand_LR','mutated_guide_GRCh38','mutated_guide_LR','num_mismatch_GRCh38','num_mismatch_LR']]
|
884 |
+
if merged_match_set.shape[0]>0:
|
885 |
+
#st.write('**Matched** Guides for **Set C** (*Each guide sequence has a trailing NGG*)')
|
886 |
+
st.write('**Matched** Guides for **Set B** to both **GRCh38 and CHM13 references** (*Each guide sequence has a trailing NGG* and **leading G even if it is a missmatch**)')
|
887 |
+
tbl_disp(merged_match_set,'select_genes','SetB_Matched_GRCh38_CHM13',14,0)
|
888 |
+
|
889 |
+
#st.table(merged_match_seta)
|
890 |
+
elif merged_mutated_set.shape[0]>0:
|
891 |
+
#st.write('**Missmatched** Guides **Set C** (*Each guide sequence has a trailing NGG*)')
|
892 |
+
st.write('**Mutated** Guides for **Set B** to both **GRCh38 and CHM13 references** (*Each guide sequence has a trailing NGG* and **leading G even if it is a missmatch**)')
|
893 |
+
#st.markdown(caution1,unsafe_allow_html=True)
|
894 |
+
tbl_disp(merged_mutated_set,'select_genes','SetB_Mutated_GRCh38_CHM13',15,0)
|
895 |
+
|
896 |
+
elif ListBRes:
|
897 |
+
st.write("**Please select genes from the above table to begin**")
|
898 |
+
|
899 |
+
ListCRes = st.checkbox('Results For SetC',key=50)
|
900 |
+
if ListCRes: # and not isinstance(get_table, type(None)):#get_table!=None:
|
901 |
+
#variant_set=get_table[['gene']]
|
902 |
+
st.write('**Please select Guides From Table Below to processes from ListC**')
|
903 |
+
get_table=tbl_disp(reflistC_concatenated,variant,'ref_guides',16,0)
|
904 |
+
if not isinstance(get_table, type(None)):
|
905 |
+
variant_set=get_table['gene']
|
906 |
+
dft_c = pd.DataFrame(columns=['gene','guide_type','protospacer_A','protospacer_B'])
|
907 |
+
dft_resc=pd.DataFrame(columns=['sgID_1', 'sgRNA_1', 'chr_sgRNA_1', 'position_sgRNA_1', 'sgID_2', 'sgRNA_2', 'chr_sgRNA_2', 'position_sgRNA_2', 'sgID_1_2'])
|
908 |
+
dft_res_mutc=pd.DataFrame(columns=['sgID_1', 'sgRNA_1', 'chr_sgRNA_1', 'position_sgRNA_1', 'sgID_2', 'sgRNA_2', 'chr_sgRNA_2', 'position_sgRNA_2', 'sgID_1_2'])
|
909 |
+
dft_notfoundc=pd.DataFrame(columns=['gene','ref_guide'])
|
910 |
+
df_matched_guides_ref = pd.DataFrame(columns=['gene','ref_guide', 'chr', 'position', 'mutated_guide', 'strand', 'num_mismatch'])
|
911 |
+
df_mutated_guides_ref = pd.DataFrame(columns=['gene','ref_guide', 'chr', 'position', 'mutated_guide', 'strand', 'num_mismatch'])
|
912 |
+
#CHECK FOR GRCh38
|
913 |
+
for i in range(variant_set.shape[0]):
|
914 |
+
#ref_listC=listC[listC['gene']==variant_set.iloc[i]['gene']][['guide_type','protospacer_A','protospacer_B','sgID_AB']]
|
915 |
+
ref_listC=listC[listC['sgID_AB']==variant_set.iloc[i]][['guide_type','protospacer_A','protospacer_B','sgID_AB']]
|
916 |
+
ref_listC =ref_listC[['sgID_AB','guide_type','protospacer_A','protospacer_B']]
|
917 |
+
|
918 |
+
ref_listC.columns=['gene','guide_type','protospacer_A','protospacer_B']
|
919 |
+
res,res_mut,res_notfound,list_match,list_mutated,gflgc1=get_lists(ref_listC,listC_found_ref,listC_notfound_ref)
|
920 |
+
dft_c=dft_c.append(ref_listC)
|
921 |
+
if res.shape[0]>0:
|
922 |
+
dft_resc=dft_resc.append(res)
|
923 |
+
if res_mut.shape[0]>0:
|
924 |
+
dft_res_mutc=dft_res_mutc.append(res_mut)
|
925 |
+
if res_notfound.shape[0]>0:
|
926 |
+
dft_notfoundc= dft_notfoundc.append(res_notfound)
|
927 |
+
if list_match.shape[0]>0:
|
928 |
+
df_matched_guides_ref= df_matched_guides_ref.append(list_match)
|
929 |
+
if list_mutated.shape[0]>0:
|
930 |
+
df_mutated_guides_ref= df_mutated_guides_ref.append(list_mutated)
|
931 |
+
|
932 |
+
#st.write('Selected Reference Guides for **Set C**')
|
933 |
+
#tbl_disp(dft_c,'All','ReferenceGuides',0)
|
934 |
+
if dft_resc.shape[0]>0:
|
935 |
+
st.write('Matched to **GRCh38** Reference Guides for **Set C**')
|
936 |
+
tbl_disp(dft_resc,'select_genes','SetC_GRCh38',17)
|
937 |
+
elif dft_res_mutc.shape[0]>0:
|
938 |
+
st.write('Mutated to **GRCh38** Reference Guides for **Set C**')
|
939 |
+
st.markdown(caution1,unsafe_allow_html=True)
|
940 |
+
tbl_disp(dft_res_mutc,'select_genes','SetC_Mutated_GRCh38',18)
|
941 |
+
if dft_notfoundc.shape[0]>0:
|
942 |
+
st.write('**SetC Guides Not Found in GRCh38**')
|
943 |
+
#tbl_disp(dft_notfound,'select_genes','SetA_Notfound_GRCh38')
|
944 |
+
st.table(dft_notfoundc)
|
945 |
+
|
946 |
+
#Now CHECK FOR CHM13
|
947 |
+
dft_c = pd.DataFrame(columns=['gene','guide_type','protospacer_A','protospacer_B'])
|
948 |
+
dft_lr_resc=pd.DataFrame(columns=['sgID_1', 'sgRNA_1', 'chr_sgRNA_1', 'position_sgRNA_1', 'sgID_2', 'sgRNA_2', 'chr_sgRNA_2', 'position_sgRNA_2', 'sgID_1_2'])
|
949 |
+
dft_lr_res_mutc=pd.DataFrame(columns=['sgID_1', 'sgRNA_1', 'chr_sgRNA_1', 'position_sgRNA_1', 'sgID_2', 'sgRNA_2', 'chr_sgRNA_2', 'position_sgRNA_2', 'sgID_1_2'])
|
950 |
+
dft_lr_notfoundc=pd.DataFrame(columns=['gene','ref_guide'])
|
951 |
+
df_matched_guides_lr = pd.DataFrame(columns=['gene','ref_guide', 'chr', 'position', 'mutated_guide', 'strand', 'num_mismatch'])
|
952 |
+
df_mutated_guides_lr = pd.DataFrame(columns=['gene','ref_guide', 'chr', 'position', 'mutated_guide', 'strand', 'num_mismatch'])
|
953 |
+
|
954 |
+
for i in range(variant_set.shape[0]):
|
955 |
+
#ref_listC=listC[listC['gene']==variant_set.iloc[i]['gene']][['guide_type','protospacer_A','protospacer_B','sgID_AB']]
|
956 |
+
ref_listC=listC[listC['sgID_AB']==variant_set.iloc[i]][['guide_type','protospacer_A','protospacer_B','sgID_AB']]
|
957 |
+
ref_listC=ref_listC[['sgID_AB','guide_type','protospacer_A','protospacer_B']]
|
958 |
+
|
959 |
+
ref_listC.columns=['gene','guide_type','protospacer_A','protospacer_B']
|
960 |
+
res,res_mut,res_notfound,list_match,list_mutated,gflgc1=get_lists(ref_listC,listC_found_lr,listC_notfound_lr)
|
961 |
+
dft_c=dft_c.append(ref_listC)
|
962 |
+
if res.shape[0]>0:
|
963 |
+
dft_lr_resc=dft_lr_resc.append(res)
|
964 |
+
if res_mut.shape[0]>0:
|
965 |
+
dft_lr_res_mutc=dft_lr_res_mutc.append(res_mut)
|
966 |
+
if res_notfound.shape[0]>0:
|
967 |
+
dft_lr_notfoundc= dft_lr_notfoundc.append(res_notfound)
|
968 |
+
if list_match.shape[0]>0:
|
969 |
+
df_matched_guides_lr= df_matched_guides_lr.append(list_match)
|
970 |
+
if list_mutated.shape[0]>0:
|
971 |
+
df_mutated_guides_lr= df_mutated_guides_lr.append(list_mutated)
|
972 |
+
|
973 |
+
if dft_lr_resc.shape[0]>0:
|
974 |
+
st.write('Matched to **CHM13** Reference Guides for **Set C**')
|
975 |
+
tbl_disp(dft_lr_resc,'select_genes','SetC_CHM13',19)
|
976 |
+
elif dft_lr_res_mutc.shape[0]>0:
|
977 |
+
st.write('Mutated to **CHM13** Reference Guides for **Set C**')
|
978 |
+
st.markdown(caution1,unsafe_allow_html=True)
|
979 |
+
tbl_disp(dft_lr_res_mutc,'select_genes','SetC_Mutated_CHM13',20)
|
980 |
+
if dft_lr_notfoundc.shape[0]>0:
|
981 |
+
st.write('**SetC Guides Not Found in CHM13**')
|
982 |
+
st.table(dft_lr_notfoundc)
|
983 |
+
#NOW MERGE FROM GRCh38 and LR
|
984 |
+
merged_mutated_set=pd.merge(df_mutated_guides_ref,df_mutated_guides_lr, how="outer",on=["gene","ref_guide","chr"],suffixes=["_GRCh38",'_LR'])
|
985 |
+
merged_mutated_set = merged_mutated_set[['gene','ref_guide','chr','position_GRCh38','position_LR','strand_GRCh38','strand_LR','mutated_guide_GRCh38','mutated_guide_LR','num_mismatch_GRCh38','num_mismatch_LR']]
|
986 |
+
merged_match_set=pd.merge(df_matched_guides_ref,df_matched_guides_lr, how="outer",on=["gene","ref_guide","chr"],suffixes=["_GRCh38",'_LR'])
|
987 |
+
merged_match_set = merged_match_set[['gene','ref_guide','chr','position_GRCh38','position_LR','strand_GRCh38','strand_LR','mutated_guide_GRCh38','mutated_guide_LR','num_mismatch_GRCh38','num_mismatch_LR']]
|
988 |
+
if merged_match_set.shape[0]>0:
|
989 |
+
#st.write('**Matched** Guides for **Set C** (*Each guide sequence has a trailing NGG*)')
|
990 |
+
st.write('**Matched** Guides for **Set C** to both **GRCh38 and CHM13 references** (*Each guide sequence has a trailing NGG* and **leading G even if it is a missmatch**)')
|
991 |
+
tbl_disp(merged_match_set,'select_genes','SetC_Matched_GRCh38_CHM13',21,0)
|
992 |
+
|
993 |
+
#st.table(merged_match_seta)
|
994 |
+
elif merged_mutated_set.shape[0]>0:
|
995 |
+
#st.write('**Missmatched** Guides **Set C** (*Each guide sequence has a trailing NGG*)')
|
996 |
+
st.write('**Mutated** Guides for **Set C** to both **GRCh38 and CHM13 references** (*Each guide sequence has a trailing NGG* and **leading G even if it is a missmatch**)')
|
997 |
+
#st.markdown(caution1,unsafe_allow_html=True)
|
998 |
+
tbl_disp(merged_mutated_set,'select_genes','SetC_Mutated_GRCh38_CHM13',22,0)
|
999 |
+
|
1000 |
+
# if ListARes and ListBRes and ListCRes:
|
1001 |
+
# Order_List = st.checkbox('Generate Order Ready List',key=100)
|
1002 |
+
# if Order_List:
|
1003 |
+
# if dft_lr_resa.shape[0]>0:
|
1004 |
+
# st.table(dft_lr_resa)
|
1005 |
+
|
1006 |
+
|
1007 |
+
elif ListCRes:
|
1008 |
+
st.write("**Please select genes from the above table to begin**")
|
1009 |
+
elif Calc=='Not_Found':
|
1010 |
+
ListAResNotFound = st.checkbox('Results For SetA',key=30)
|
1011 |
+
if ListAResNotFound and listA_notfound_lr.shape[0]>0:
|
1012 |
+
listA_notfound_LR_sorted=listA_notfound_lr.sort_values('gene')
|
1013 |
+
sz1a=listA_notfound_LR_sorted.shape[0]
|
1014 |
+
vaild_guides_a = listA_notfound_LR_sorted[~listA_notfound_LR_sorted['gene'].str.contains("non")]
|
1015 |
+
|
1016 |
+
|
1017 |
+
sz2a=vaild_guides_a.shape[0]
|
1018 |
+
st.write(str(sz2a)+"/"+str(sz1a)+' Guides Not Found')
|
1019 |
+
tbl_disp(vaild_guides_a,'all_not_found','SetA_KOLF2.1',23,0)
|
1020 |
+
|
1021 |
+
#now get gene names only
|
1022 |
+
genesa=vaild_guides_a['gene'].str.split('_').str[0]
|
1023 |
+
genesa1=genesa[genesa.duplicated(keep=False)]
|
1024 |
+
genesa2=genesa1.unique()
|
1025 |
+
pair_lista=[]
|
1026 |
+
for g in genesa2:
|
1027 |
+
g1=vaild_guides_a[vaild_guides_a['gene'].str.contains(g)]
|
1028 |
+
g2=g1.reset_index(drop=True)
|
1029 |
+
pair_lista.append([g2.gene[0],g2.ref_guide[0],g2.gene[1],g2.ref_guide[1]])
|
1030 |
+
pair_missmatch_a = pd.DataFrame(pair_lista, columns=['sgID_1','sgRNA_1','sgID_2','sgRNA_2'])
|
1031 |
+
sz22a=pair_missmatch_a.shape[0]
|
1032 |
+
st.write(str(sz22a)+"/"+str(sz2a)+' Paired Guides Not Found')
|
1033 |
+
tbl_disp(pair_missmatch_a,'all_not_found','SetA_KOLF2.1',23,0)
|
1034 |
+
|
1035 |
+
|
1036 |
+
|
1037 |
+
non_targeting_guides_a = listA_notfound_LR_sorted[listA_notfound_LR_sorted['gene'].str.contains("non")]
|
1038 |
+
sz3a=non_targeting_guides_a.shape[0]
|
1039 |
+
st.write(str(sz3a)+"/"+str(sz1a)+' no-targeting Guides Not Found')
|
1040 |
+
tbl_disp(non_targeting_guides_a,'all_not_found','SetA_KOLF2.1',23,0)
|
1041 |
+
|
1042 |
+
ListBResNotFound = st.checkbox('Results For SetB',key=40)
|
1043 |
+
if ListBResNotFound:
|
1044 |
+
listB_notfound_LR_sorted=listB_notfound_lr.sort_values('gene')
|
1045 |
+
sz1b=listB_notfound_LR_sorted.shape[0]
|
1046 |
+
vaild_guides_b = listB_notfound_LR_sorted[~listB_notfound_LR_sorted['gene'].str.contains("non")]
|
1047 |
+
sz2b=vaild_guides_b.shape[0]
|
1048 |
+
st.write(str(sz2b)+"/"+str(sz1b)+' Guides Not Found')
|
1049 |
+
tbl_disp(vaild_guides_b,'all_not_found','SetA_KOLF2.1',23,0)
|
1050 |
+
|
1051 |
+
#now get gene names only
|
1052 |
+
genesb=vaild_guides_b['gene'].str.split('_').str[0]
|
1053 |
+
genesb1=genesb[genesb.duplicated(keep=False)]
|
1054 |
+
genesb2=genesb1.unique()
|
1055 |
+
pair_listb=[]
|
1056 |
+
for g in genesb2:
|
1057 |
+
g1=vaild_guides_b[vaild_guides_b['gene'].str.contains(g)]
|
1058 |
+
g2=g1.reset_index(drop=True)
|
1059 |
+
pair_listb.append([g2.gene[0],g2.ref_guide[0],g2.gene[1],g2.ref_guide[1]])
|
1060 |
+
pair_missmatch_b = pd.DataFrame(pair_listb, columns=['sgID_1','sgRNA_1','sgID_2','sgRNA_2'])
|
1061 |
+
sz22b=pair_missmatch_b.shape[0]
|
1062 |
+
st.write(str(sz22b)+"/"+str(sz2b)+' Paired Guides Not Found')
|
1063 |
+
tbl_disp(pair_missmatch_b,'all_not_found','SetA_KOLF2.1',23,0)
|
1064 |
+
|
1065 |
+
|
1066 |
+
non_targeting_guides_b = listB_notfound_LR_sorted[listB_notfound_LR_sorted['gene'].str.contains("non")]
|
1067 |
+
sz3b=non_targeting_guides_b.shape[0]
|
1068 |
+
st.write(str(sz3b)+"/"+str(sz1b)+' no-targeting Guides Not Found')
|
1069 |
+
tbl_disp(non_targeting_guides_b,'all_not_found','SetA_KOLF2.1',23,0)
|
1070 |
+
ListCResNotFound = st.checkbox('Results For SetC',key=50)
|
1071 |
+
if ListCResNotFound:
|
1072 |
+
listC_notfound_LR_sorted=listC_notfound_lr.sort_values('gene')
|
1073 |
+
sz1c=listC_notfound_LR_sorted.shape[0]
|
1074 |
+
vaild_guides_c = listC_notfound_LR_sorted[~listC_notfound_LR_sorted['gene'].str.contains("non")]
|
1075 |
+
sz2c=vaild_guides_c.shape[0]
|
1076 |
+
st.write(str(sz2c)+"/"+str(sz1c)+' Guides Not Found')
|
1077 |
+
tbl_disp(vaild_guides_c,'all_not_found','SetA_KOLF2.1',23,0)
|
1078 |
+
|
1079 |
+
#now get gene names only
|
1080 |
+
genesc=vaild_guides_c['gene'].str.split('_').str[0]
|
1081 |
+
genesc1=genesc[genesc.duplicated(keep=False)]
|
1082 |
+
genesc2=genesc1.unique()
|
1083 |
+
pair_listc=[]
|
1084 |
+
for g in genesc2:
|
1085 |
+
g1=vaild_guides_c[vaild_guides_c['gene'].str.contains(g)]
|
1086 |
+
g2=g1.reset_index(drop=True)
|
1087 |
+
pair_listc.append([g2.gene[0],g2.ref_guide[0],g2.gene[1],g2.ref_guide[1]])
|
1088 |
+
pair_missmatch_c = pd.DataFrame(pair_listc, columns=['sgID_1','sgRNA_1','sgID_2','sgRNA_2'])
|
1089 |
+
sz22c=pair_missmatch_c.shape[0]
|
1090 |
+
st.write(str(sz22c)+"/"+str(sz2c)+' Paired Guides Not Found')
|
1091 |
+
tbl_disp(pair_missmatch_c,'all_not_found','SetA_KOLF2.1',23,0)
|
1092 |
+
|
1093 |
+
|
1094 |
+
non_targeting_guides_c = listC_notfound_LR_sorted[listC_notfound_LR_sorted['gene'].str.contains("non")]
|
1095 |
+
sz3c=non_targeting_guides_c.shape[0]
|
1096 |
+
st.write(str(sz3c)+"/"+str(sz1c)+' no-targeting Guides Not Found')
|
1097 |
+
tbl_disp(non_targeting_guides_c,'all_not_found','SetA_KOLF2.1',23,0)
|
1098 |
+
|
1099 |
+
else:
|
1100 |
+
st.write("**Place Holder for All**")
|