import streamlit as st
import pandas as pd
import numpy as np
from st_aggrid import AgGrid, GridOptionsBuilder,GridUpdateMode,DataReturnMode
from iteration_utilities import duplicates
from iteration_utilities import unique_everseen
import os
st.set_page_config(layout="wide")
st.markdown(
"""
""",
unsafe_allow_html=True,
)
caution = '
Please note that Only one Guide (from pair) is found. Please see guides not found section for other guide
'
caution1 = 'Please note that Each mutated guide is reported as a sepearte line. sgID_1/2, sgRNA_1/2, chr_sgRNA_1/2 and position_sgRNA_1/2 represent values for reference/mutated guide
'
caution2 = 'Please Select a single/multiple guides and then select Check Box A, B or C Otherwise code will through error
'
table_edit = 'About Table: Please note that table can be sorted by clicking on any column and Multiple rows can be selected (by clicking check box in first column) to save only those rows.
'
caution_genes = 'Please make sure that desired genes from all three lists should be selected to generate Order Ready Table.
'
#READ INPUT FILES
cwd=os.getcwd()+'/'+'data/'
#Here, gene column is modified for non-targeting guides in the format sgID_1|sgID_2 for coherent downstream manipulation
listA = pd.read_csv(cwd+"guides_a_new.csv",index_col=False)
listB = pd.read_csv(cwd+"guides_b_new.csv",index_col=False)
listC = pd.read_csv(cwd+"guides_c_new.csv",index_col=False)
lista_sz=listA.shape[0]
listb_sz=listB.shape[0]
listc_sz=listC.shape[0]
#st.write(listA.shape)
variantsa1=listA['gene'].unique()
variantsb1=listB['gene'].unique()
variantsc1=listC['gene'].unique()
#Make a comprehensive lsit of genes in all 3 lists (Please not that non-targeting guide names are not same across three lists)
con = np.concatenate((variantsa1, variantsb1, variantsc1))
variants_s=sorted(np.unique(con))
#NOW read GRCh38 and LR guides for stea as identified by LR-Guides pipeline
#Format is: gene (as many entries as number of guides found, both matched and mutated), ref_guide, chr, position, mutated_guide (can also be same as reference), strand, num_mismatcg (excluding leading G), Please note that each guide has trailing NGG
listA_found_ref = pd.read_csv(cwd+"seta_found_ref1.csv",index_col=False)
listA_found_ref = listA_found_ref.sort_values('gene')
lsita_ref_found_sz=listA_found_ref.shape[0]
#remove # from chr# #
listA_found_ref['chr'] = [x.split(' ')[-0] for x in listA_found_ref['chr']]
listA_found_ref.rename(columns = {'strnad':'strand'}, inplace = True) #Also change strnad to strand (was misspelled in LR-Guides pipeline)
#This (all such) file has 2-columns (gene as given in sgID_1/2, ref_guide).
listA_notfound_ref = pd.read_csv(cwd+"seta_notfound_ref1.csv",index_col=False)
listA_notfound_ref=listA_notfound_ref.sort_values('gene')
lsita_ref_notfound_sz=listA_notfound_ref.shape[0]
#LR guides
listA_found_lr = pd.read_csv(cwd+"seta_found_LR1.csv",index_col=False)
listA_found_lr=listA_found_lr.sort_values('gene')
lsita_lr_found_sz=listA_found_lr.shape[0]
listA_found_lr.rename(columns = {'strnad':'strand'}, inplace = True)
listA_notfound_lr = pd.read_csv(cwd+"seta_notfound_LR1.csv",index_col=False)
listA_notfound_lr=listA_notfound_lr.sort_values('gene')
lsita_lr_notfound_sz=listA_notfound_lr.shape[0]
#Also read GRCh38 and LR guides for set b
listB_found_ref = pd.read_csv(cwd+"setb_found_ref1.csv",index_col=False)
listB_found_ref=listB_found_ref.sort_values('gene')
lsitb_ref_found_sz=listB_found_ref.shape[0]
#remove # from chr# #
listB_found_ref['chr'] = [x.split(' ')[-0] for x in listB_found_ref['chr']]
listB_found_ref=listB_found_ref.sort_values('gene')
listB_found_ref.rename(columns = {'strnad':'strand'}, inplace = True)
listB_notfound_ref = pd.read_csv(cwd+"setb_notfound_ref1.csv",index_col=False)
listB_notfound_ref=listB_notfound_ref.sort_values('gene')
lsitb_ref_notfound_sz=listB_notfound_ref.shape[0]
listB_found_lr = pd.read_csv(cwd+"setb_found_LR1.csv",index_col=False)
listB_found_lr=listB_found_lr.sort_values('gene')
lsitb_lr_found_sz=listB_found_lr.shape[0]
listB_found_lr.rename(columns = {'strnad':'strand'}, inplace = True)
listB_notfound_lr = pd.read_csv(cwd+"setb_notfound_LR1.csv",index_col=False)
listB_notfound_lr=listB_notfound_lr.sort_values('gene')
lsitb_lr_notfound_sz=listB_notfound_lr.shape[0]
#Also read GRCh38 and LR guides for set c
listC_found_ref = pd.read_csv(cwd+"setc_found_ref1.csv",index_col=False)
listC_found_ref=listC_found_ref.sort_values('gene')
lsitc_ref_found_sz=listC_found_ref.shape[0]
#remove # from chr# #
listC_found_ref['chr'] = [x.split(' ')[-0] for x in listC_found_ref['chr']]
listC_found_ref.rename(columns = {'strnad':'strand'}, inplace = True)
listC_notfound_ref = pd.read_csv(cwd+"setc_notfound_ref1.csv",index_col=False)
listC_notfound_ref=listC_notfound_ref.sort_values('gene')
lsitc_ref_notfound_sz=listC_notfound_ref.shape[0]
listC_found_lr = pd.read_csv(cwd+"setc_found_LR1.csv",index_col=False)
listC_found_lr=listC_found_lr.sort_values('gene')
lsitc_lr_found_sz=listC_found_lr.shape[0]
listC_found_lr.rename(columns = {'strnad':'strand'}, inplace = True)
listC_notfound_lr = pd.read_csv(cwd+"setc_notfound_LR1.csv",index_col=False)
listC_notfound_lr=listC_notfound_lr.sort_values('gene')
lsitc_lr_notfound_sz=listC_notfound_lr.shape[0]
#This for all guides order table
set_start=0
regular_lista=listA[~listA['gene'].str.contains('non-targeting')]['sgID_AB']#[['gene','guide_type','protospacer_A','protospacer_B','sgID_AB']]
regular_lista=regular_lista.sort_values()
set_end=regular_lista.shape[0] #18905
#regular_lista=regular_lista.iloc[set_start:set_end]
non_targeting_lista=listA[listA['gene'].str.contains('non-targeting')]['sgID_AB']#[['gene','guide_type','protospacer_A','protospacer_B','sgID_AB']]
non_targeting_lista=non_targeting_lista.sort_values()
#regular_lista=regular_lista.reset_index()
regular_listb=listB[~listB['gene'].str.contains('non-targeting')]['sgID_AB']#[['gene','guide_type','protospacer_A','protospacer_B','sgID_AB']]
regular_listb=regular_listb.sort_values()
#regular_listb=regular_listb.iloc[set_start:set_end]
non_targeting_listb=listB[listB['gene'].str.contains('non-targeting')]['sgID_AB']#[['gene','guide_type','protospacer_A','protospacer_B','sgID_AB']]
non_targeting_listb=non_targeting_listb.sort_values()
#regular_listb=regular_listb.reset_index()
regular_listc=listC[~listC['gene'].str.contains('non-targeting')]['sgID_AB']#[['gene','guide_type','protospacer_A','protospacer_B','sgID_AB']]
regular_listc=regular_listc.sort_values()
#regular_listc=regular_listc[set_start:set_end]
non_targeting_listc=listC[listC['gene'].str.contains('non-targeting')]['sgID_AB']#[['gene','guide_type','protospacer_A','protospacer_B','sgID_AB']]
non_targeting_listc=non_targeting_listc.sort_values()
#GENERAL FUNCTIONS
def transform(df,str):
cols = st.multiselect(str,
df.columns.tolist(),
df.columns.tolist()
)
df = df[cols]
return df
def convert_df(df):
return df.to_csv().encode('utf-8')
def convert_df1(df):
return df.to_csv(index=False).encode('utf-8')
#########TABLE DISPLAY
def tbl_disp(dat,var,ref,key,flg=1):
dat.reset_index(drop=True, inplace=True)
#df = transform(dft,'Please Select columns to save whole table')
#fname = st.text_input('Please input file name to save Table', 'temp')
#fname = st_keyup("Please input file name to save Table", value='temp')
csv = convert_df(dat)
if flg==1:
st.download_button(
label="Download Full Table as CSV file",
data=csv,
file_name=var+'_'+ref+'.csv',#fname+'.csv',
mime='text/csv',
#key=key,
)
gb = GridOptionsBuilder.from_dataframe(dat)
gb.configure_pagination(enabled=False)#,paginationAutoPageSize=False)#True) #Add pagination
gb.configure_default_column(enablePivot=True, enableValue=True, enableRowGroup=True)
gb.configure_selection(selection_mode="multiple", use_checkbox=True)
gb.configure_column("gene", headerCheckboxSelection = True)
gb.configure_side_bar()
gridOptions = gb.build()
grid_response = AgGrid(
dat,
height=200,
gridOptions=gridOptions,
enable_enterprise_modules=True,
update_mode=GridUpdateMode.MODEL_CHANGED,
data_return_mode=DataReturnMode.FILTERED_AND_SORTED,
fit_columns_on_grid_load=False,
header_checkbox_selection_filtered_only=True,
use_checkbox=True,
width='100%'
#key=key
)
selected = grid_response['selected_rows']
if selected:
#st.write('Selected rows')
dfs = pd.DataFrame(selected)
#st.dataframe(dfs[dfs.columns[1:dfs.shape[1]]])
#dfs1 = transform(dfs[dfs.columns[1:dfs.shape[1]]],'Please select columns to save selected Table')
csv = convert_df1(dfs[dfs.columns[1:dfs.shape[1]]])
#csv = convert_df1(dfs1)
if flg:
st.download_button(
label="Download Selected data as CSV",
data=csv,
file_name=var+'_'+ref+'.csv',
mime='text/csv',
)
return dfs
def get_lists(ref_list,list_found_ref,list_notfound_ref):
#This module retrieves guide_id and searches for guide sequences from the table
#st.table(ref_list)
a_ref=[]
#st.table(ref_list)
for i in range(len(ref_list)):
a_ref.append(ref_list.sgID_AB.values[i].split('|')[0])
a_ref.append(ref_list.sgID_AB.values[i].split('|')[1])
set_found0_ref=[]
#st.table(a_ref)
for i in range(len(a_ref)):
set_found0_ref.append(list_found_ref[list_found_ref['gene']==a_ref[i]])
#st.write(set_found0_ref)
list_concatenated_found_ref = pd.concat(set_found0_ref)
list_concatenated_match_ref = list_concatenated_found_ref[list_concatenated_found_ref.num_mismatch == 0] #only select guides with zero mismatches for match list, MISSMATCH LIST LATER
#Also remove Alternate loci's data
list_concatenated_match_ref = list_concatenated_match_ref[list_concatenated_match_ref['chr'].str.contains('chr')]
#st.table(list_concatenated_match_ref)
#also create new list with both sgRNAs in one row
dft=pd.DataFrame(columns=['gene','ref_guide', 'chr', 'position', 'mutated_guide', 'strand', 'num_mismatch'])
guideflg1=1
#st.table(list_concatenated_match_ref)
if list_concatenated_match_ref.shape[0]>0:
guideflg1=0
t=list_concatenated_match_ref.reset_index(drop=True)
#st.table(t)
##########
#check even/odd entries
if t.shape[0]==1:
t1=t.loc[t.index.repeat(2)].reset_index(drop=True)
#st.write(t1)
dft=assemble_tbl(t1)
elif t.shape[0]%2==0: #even
dft=assemble_tbl(t)
else: #odd
t1 = pd.DataFrame(columns=['gene','ref_guide', 'chr', 'position', 'mutated_guide', 'strand', 'num_mismatch'])
i=0
while i 0]
list_concatenated_mutated_ref=list_concatenated_mutated_ref.sort_values('position')
#Also remove Alternate loci's data
list_concatenated_mutated_ref = list_concatenated_mutated_ref[list_concatenated_mutated_ref['chr'].str.contains('chr')]
dft_mut = pd.DataFrame(columns=['sgID_1','sgRNA_1','chr_sgRNA_1','position_sgRNA_1','sgID_2','sgRNA_2','chr_sgRNA_2','position_sgRNA_2', 'sgID_1_2'])
if list_concatenated_mutated_ref.shape[0]>0:
dft_mut = get_mutated_res(list_concatenated_mutated_ref)
#check not found
seta_notfound0_ref=list_notfound_ref[list_notfound_ref['gene']==a_ref[0]]
seta_notfound1_ref=list_notfound_ref[list_notfound_ref['gene']==a_ref[1]]
list_concatenated_notfound_ref = pd.concat([seta_notfound0_ref,seta_notfound1_ref])
return dft.iloc[:1], dft_mut,list_concatenated_notfound_ref,list_concatenated_match_ref,list_concatenated_mutated_ref,guideflg1
###########
def get_mutated_res(list_concatenated_mutated_ref):
#########
#if list_concatenated_mutated_ref.shape[0]>0:
t=list_concatenated_mutated_ref.reset_index(drop=True)
#st.table(t)
dft_mut = pd.DataFrame(columns=['sgID_1','sgRNA_1','chr_sgRNA_1','position_sgRNA_1','sgID_2','sgRNA_2','chr_sgRNA_2','position_sgRNA_2', 'sgID_1_2'])
c1=['sgID_1','sgRNA_1','chr_sgRNA_1','position_sgRNA_1']
c2=['sgID_2','sgRNA_2','chr_sgRNA_2','position_sgRNA_2']#, 'sgID_1_2']
#st.table(listA_concatenated_match_ref)
#st.write(t.shape[0])
tf=0
#for i in range(0,t.shape[0],2):
for i in range(t.shape[0]):
l1=t.iloc[[i]]
l1.columns=['sgID_1','sgRNA_1','chr_sgRNA_1','position_sgRNA_1','mutated_guide', 'strand', 'num_mismatch']
l2=l1.copy()
l2.columns=['sgID_2','sgRNA_2','chr_sgRNA_2','position_sgRNA_2','mutated_guide2', 'strand2', 'num_mismatch2']
list_concatenated_mutated_ref1=[]
#listA_concatenated_mutated_ref1=pd.concat([l1.reset_index(drop=True),l2.reset_index(drop=True)],axis=1)
list_concatenated_mutated_ref1=pd.concat([l1.reset_index(drop=True),l2.reset_index(drop=True)],axis=1)
#st.table(listA_concatenated_mutated_ref1)
list_concatenated_mutated_ref1=list_concatenated_mutated_ref1[['sgID_1','sgRNA_1','chr_sgRNA_1','position_sgRNA_1','sgID_2','mutated_guide2','chr_sgRNA_2','position_sgRNA_2']]
#also change if not leading G
list_concatenated_mutated_ref1['sgRNA_1']='G'+list_concatenated_mutated_ref1['sgRNA_1'].str.slice(1, 20)
#also change name of mutated_guide2 column
list_concatenated_mutated_ref1.columns=['sgID_1','sgRNA_1','chr_sgRNA_1','position_sgRNA_1','sgID_2','sgRNA_2','chr_sgRNA_2','position_sgRNA_2']
list_concatenated_mutated_ref1['sgRNA_2']='G'+list_concatenated_mutated_ref1['sgRNA_2'].str.slice(1, 20)
list_concatenated_mutated_ref1['sgID_1_2']=list_concatenated_mutated_ref1['sgID_1']+"|"+list_concatenated_mutated_ref1['sgID_1']
#dft_mut=dft_mut.append(list_concatenated_mutated_ref1)
dft_mut=pd.concat([dft_mut,list_concatenated_mutated_ref1])
return dft_mut
def not_found_check(set12,set34,set56,listA_notfound_lr,listB_notfound_lr,listC_notfound_lr):
flg11=0
flg12=0
flg21=0
flg22=0
flg31=0
flg32=0
#st.write(set12.split('|')[1])
if listA_notfound_lr[listA_notfound_lr['gene']==set12.split('|')[0]].shape[0]>0:
flg11=1
if listA_notfound_lr[listA_notfound_lr['gene']==set12.split('|')[1]].shape[0]>0:
flg12=1
if listB_notfound_lr[listB_notfound_lr['gene']==set34.split('|')[0]].shape[0]>0:
flg21=1
if listB_notfound_lr[listB_notfound_lr['gene']==set34.split('|')[1]].shape[0]>0:
flg22=1
if listC_notfound_lr[listC_notfound_lr['gene']==set56.split('|')[0]].shape[0]>0:
flg31=1
if listC_notfound_lr[listC_notfound_lr['gene']==set56.split('|')[1]].shape[0]>0:
flg32=1
return flg11,flg12,flg21,flg22,flg31,flg32
def order_ready_tbl_CHM13(set12,set34,set56,listA_found_lr,listA_notfound_lr,listB_found_lr,listB_notfound_lr,listC_found_lr,listC_notfound_lr,ref_sel):
# st.table(set12)
# st.table(set34)
# st.table(set56)
dft_order_table=pd.DataFrame(columns=['gene','guide_type','sgID_1', 'sgRNA_1', 'chr_sgRNA_1', 'position_sgRNA_1', 'sgID_2', 'sgRNA_2', 'chr_sgRNA_2', 'position_sgRNA_2', 'sgID_1_2'])
dft_notfound_all=pd.DataFrame(columns=['gene','sgID_AB','guide_type','protospacer_A','protospacer_B'])
#dft_notfound=pd.DataFrame(columns=['gene','ref_guide'])
dft_a = pd.DataFrame(columns=['gene','guide_type','protospacer_A','protospacer_B'])
dft_b = pd.DataFrame(columns=['gene','guide_type','protospacer_A','protospacer_B'])
dft_c = pd.DataFrame(columns=['gene','guide_type','protospacer_A','protospacer_B'])
set12=set12.reset_index(drop = True)
set34=set34.reset_index(drop = True)
set56=set56.reset_index(drop = True)
for i in range(set12.shape[0]):
gene_n=set12[i].split('_')[0]
f=not_found_check(set12[i],set34[i],set56[i],listA_notfound_lr,listB_notfound_lr,listC_notfound_lr)
#st.write(f)
#st.write(set12[i],set34[i],set56[i])
#ref_listA=listA[listA['gene']==variant_set.iloc[i]][['guide_type','protospacer_A','protospacer_B','sgID_AB']]
ref_listA=listA[listA['sgID_AB']==set12.iloc[i]][['gene','guide_type','protospacer_A','protospacer_B','sgID_AB']]
ref_listA = ref_listA[['gene','sgID_AB','guide_type','protospacer_A','protospacer_B']]
#st.write(ref_listA)
#ref_listA.columns=['gene','guide_type','protospacer_A','protospacer_B']
resa,res_muta,res_notfounda,list_matcha,list_mutateda,gflga1=get_lists(ref_listA,listA_found_lr,listA_notfound_lr)
#dft_a=dft_a.append(ref_listA)
#listb
ref_listB=listB[listB['sgID_AB']==set34.iloc[i]][['guide_type','protospacer_A','protospacer_B','sgID_AB']]
ref_listB = ref_listB[['sgID_AB','guide_type','protospacer_A','protospacer_B']]
#ref_listB.columns=['gene','guide_type','protospacer_A','protospacer_B']
resb,res_mutb,res_notfoundb,list_matchb,list_mutatedb,gflgb1=get_lists(ref_listB,listB_found_lr,listB_notfound_lr)
#dft_b=dft_b.append(ref_listB)
#listc
ref_listC=listC[listC['sgID_AB']==set56.iloc[i]][['guide_type','protospacer_A','protospacer_B','sgID_AB']]
ref_listC = ref_listC[['sgID_AB','guide_type','protospacer_A','protospacer_B']]
#ref_listC.columns=['gene','guide_type','protospacer_A','protospacer_B']
resc,res_mutc,res_notfoundc,list_matchc,list_mutatedc,gflgc1=get_lists(ref_listC,listC_found_lr,listC_notfound_lr)
#dft_c=dft_c.append(ref_listC)
#st.table(ref_listA)
# st.write(gflga1,gflgb1,gflgc1)
if gflga1==0:
#Also verigy that both guides are different
#st.table(resa)
if resa['sgID_1'][0] != resa['sgID_2'][0]:
resa['gene']=gene_n
resa['guide_type']='1-2'
#dft_order_table=dft_order_table.append(resa)
dft_order_table=pd.concat([dft_order_table, resa]) #dft_order_table.concat(resa)
else: #it is nutation case, so check next
if f[2]==0 or f[3] == 0:
#st.write('came in 1')
if not resb.empty: # and resb['sgID_1'][0] != resb['sgID_2'][0]: #second guide in from setb
resa[['sgID_2', 'sgRNA_2', 'chr_sgRNA_2', 'position_sgRNA_2']] = resb[['sgID_1', 'sgRNA_1', 'chr_sgRNA_1', 'position_sgRNA_1']]
resa['sgID_1_2'] = resa['sgID_1']+"|"+resa['sgID_2']
if f[2]==0:
resa['gene']=gene_n
if f[0]==0:
resa['guide_type']="1-3"
else:
resa['guide_type']="2-3"
#dft_order_table=dft_order_table.append(resa)
dft_order_table=pd.concat([dft_order_table,resa])
else: # f[2]==0:
resa['gene']=gene_n
if f[0]==0:
resa['guide_type']="1-4"
else:
resa['guide_type']="2-4"
#dft_order_table=dft_order_table.append(resa)
dft_order_table=pd.concat([dft_order_table,resa])
else:
dft_notfound_all=pd.concat([dft_notfound_all,ref_listA], ignore_index = True)
dft_notfound_all=pd.concat([dft_notfound_all,ref_listB], ignore_index = True)
dft_notfound_all=pd.concat([dft_notfound_all,ref_listC], ignore_index = True)
else:
dft_notfound_all=pd.concat([dft_notfound_all,ref_listA], ignore_index = True)
dft_notfound_all=pd.concat([dft_notfound_all,ref_listB], ignore_index = True)
dft_notfound_all=pd.concat([dft_notfound_all,ref_listC], ignore_index = True)
elif resa.shape[0] >0: #at least one guide is from seta
#if resa['sgID_1'][0] != resa['sgID_2'][0]:
if f[2]==0 or f[3] == 0:
#st.write('came in 1')
if not resb.empty: # and resb['sgID_1'][0] != resb['sgID_2'][0]: #second guide in from setb
resa[['sgID_2', 'sgRNA_2', 'chr_sgRNA_2', 'position_sgRNA_2']] = resb[['sgID_1', 'sgRNA_1', 'chr_sgRNA_1', 'position_sgRNA_1']]
resa['sgID_1_2'] = resa['sgID_1']+"|"+resa['sgID_2']
if f[2]==0:
resa['gene']=gene_n
resa['guide_type']=str(gflga1)+"-3"
#dft_order_table=dft_order_table.append(resa)
dft_order_table=pd.concat([dft_order_table,resa])
else: # f[2]==0:
resa['gene']=gene_n
resa['guide_type']=str(gflga1)+"-4"
#dft_order_table=dft_order_table.append(resa)
dft_order_table=pd.concat([dft_order_table,resa])
else:
dft_notfound_all=pd.concat([dft_notfound_all,ref_listA], ignore_index = True)
dft_notfound_all=pd.concat([dft_notfound_all,ref_listB], ignore_index = True)
dft_notfound_all=pd.concat([dft_notfound_all,ref_listC], ignore_index = True)
elif f[4]==0 or f[5] == 0:
#st.write('came in 2')
#if resa['sgID_1'][0] != resa['sgID_2'][0]:
if not resc.empty: # and resc['sgID_1'][0] != resc['sgID_2'][0]: # resc.shape[0]>0: #second guide is from setc
resa[['sgID_2', 'sgRNA_2', 'chr_sgRNA_2', 'position_sgRNA_2']] = resc[['sgID_1', 'sgRNA_1', 'chr_sgRNA_1', 'position_sgRNA_1']]
resa['sgID_1_2'] = resa['sgID_1']+"|"+resa['sgID_2']
#dft_order_table=dft_order_table.append(resa)
if f[4]==0:
resa['gene']=gene_n
resa['guide_type']=str(gflga1)+"-5"
#dft_order_table=dft_order_table.append(resa)
dft_order_table=pd.concat([dft_order_table,resa])
else: # f[2]==0:
resa['gene']=gene_n
resa['guide_type']=str(gflga1)+"-6"
#dft_order_table=dft_order_table.append(resa)
dft_order_table=pd.concat([dft_order_table,resa])
else:
dft_notfound_all=pd.concat([dft_notfound_all,ref_listA], ignore_index = True)
dft_notfound_all=pd.concat([dft_notfound_all,ref_listB], ignore_index = True)
dft_notfound_all=pd.concat([dft_notfound_all,ref_listC], ignore_index = True)
elif resb.shape[0]>0: #at least one guide
if gflgb1==0:
if resb['sgID_1'][0] != resb['sgID_2'][0]:
resb['gene']=gene_n
resb['guide_type']='3-4'
#dft_order_table=dft_order_table.append(resb)
dft_order_table=pd.concat([dft_order_table,resb])
else:
dft_notfound_all=pd.concat([dft_notfound_all,ref_listA], ignore_index = True)
dft_notfound_all=pd.concat([dft_notfound_all,ref_listB], ignore_index = True)
dft_notfound_all=pd.concat([dft_notfound_all,ref_listC], ignore_index = True)
elif f[4]==0 or f[5] == 0:
#if not resc.empty and resc['sgID_1'][0] != resc['sgID_2'][0]:
resb[['sgID_2', 'sgRNA_2', 'chr_sgRNA_2', 'position_sgRNA_2']] = resc[['sgID_1', 'sgRNA_1', 'chr_sgRNA_1', 'position_sgRNA_1']]
resb['sgID_1_2'] = resb['sgID_1']+"|"+resb['sgID_2']
#dft_order_table=dft_order_table.append(resb)
if f[4]==0:
resb['gene']=gene_n
resb['guide_type']=str(gflgb1+2)+"-5"
#dft_order_table=dft_order_table.append(resb)
dft_order_table=pd.concat([dft_order_table,resb])
else: # f[2]==0:
resb['gene']=gene_n
resb['guide_type']=str(gflgb1+2)+"-6"
#dft_order_table=dft_order_table.append(resb)
dft_order_table=pd.concat([dft_order_table,resb])
else:
dft_notfound_all=pd.concat([dft_notfound_all,ref_listA], ignore_index = True)
dft_notfound_all=pd.concat([dft_notfound_all,ref_listB], ignore_index = True)
dft_notfound_all=pd.concat([dft_notfound_all,ref_listC], ignore_index = True)
elif resc.shape[0]>0: #at least one guide
if gflgc1==0:
if resc['sgID_1'][0] != resc['sgID_2'][0]:
resc['gene']=gene_n
resc['guide_type']='5-6'
#dft_order_table=dft_order_table.append(resc)
dft_order_table=pd.concat([dft_order_table,resc])
else:
dft_notfound_all=pd.concat([dft_notfound_all,ref_listA], ignore_index = True)
dft_notfound_all=pd.concat([dft_notfound_all,ref_listB], ignore_index = True)
dft_notfound_all=pd.concat([dft_notfound_all,ref_listC], ignore_index = True)
else:
dft_notfound_all=pd.concat([dft_notfound_all,ref_listA], ignore_index = True)
dft_notfound_all=pd.concat([dft_notfound_all,ref_listB], ignore_index = True)
dft_notfound_all=pd.concat([dft_notfound_all,ref_listC], ignore_index = True)
else:
dft_notfound_all=pd.concat([dft_notfound_all,ref_listA], ignore_index = True)
dft_notfound_all=pd.concat([dft_notfound_all,ref_listB], ignore_index = True)
dft_notfound_all=pd.concat([dft_notfound_all,ref_listC], ignore_index = True)
if dft_order_table.shape[0]>0:
#check total guides found
# st.write(str(set12.shape[0]))
# st.write(str(set34.shape[0]))
# st.write(str(set56.shape[0]))
st.write('**Please note that for guides matching to multiple locations (an example is ABCC6), only first pair is returned**')
szt=set12.shape[0]
szf=dft_order_table.shape[0]
# st.write(str(dft_order_table.shape[0]))
szd=szt-szf
if szd>0:
st.write('Order Ready '+ref_sel+' guides List: '+str(szd)+'/'+str(szt)+' **guides were not found**')
tbl_disp(dft_order_table,'select_genes','SetA_CHM13',5)
else:
st.write('Order Ready '+ref_sel+' guides List')
tbl_disp(dft_order_table,'select_genes','SetA_CHM13',5)
else:
st.write('**No guides found in ListA, ListB and ListC**')
if dft_notfound_all.shape[0]>0:
st.write('**Guides not found in any lists**')
tbl_disp(dft_notfound_all,'select_genes','SetA_CHM13',6)
def assemble_tbl(t):
dft = pd.DataFrame(columns=['sgID_1','sgRNA_1','chr_sgRNA_1','position_sgRNA_1','sgID_2','sgRNA_2','chr_sgRNA_2','position_sgRNA_2', 'sgID_1_2'])
#for i in range(0,t.shape[0],2):
mid=int(t.shape[0]/2)
for i in range(int(t.shape[0]/2)):
l1=t.iloc[[i]]
l1.columns=['sgID_1','sgRNA_1','chr_sgRNA_1','position_sgRNA_1','mutated_guide', 'strand', 'num_mismatch']
#l2=t.iloc[[i+1]]
l2=t.iloc[[mid]]
l2.columns=['sgID_2','sgRNA_2','chr_sgRNA_2','position_sgRNA_2','mutated_guide2', 'strand2', 'num_mismatch2']
listA_concatenated_match_LR1=pd.concat([l1.reset_index(drop=True),l2.reset_index(drop=True)],axis=1)
listA_concatenated_match_LR1=listA_concatenated_match_LR1[['sgID_1','sgRNA_1','chr_sgRNA_1','position_sgRNA_1','sgID_2','sgRNA_2','chr_sgRNA_2','position_sgRNA_2']]
listA_concatenated_match_LR1['sgRNA_1']=listA_concatenated_match_LR1['sgRNA_1'].str.slice(0, 20)
listA_concatenated_match_LR1['sgRNA_2']=listA_concatenated_match_LR1['sgRNA_2'].str.slice(0, 20)
listA_concatenated_match_LR1['sgID_1_2']=listA_concatenated_match_LR1['sgID_1']+"|"+listA_concatenated_match_LR1['sgID_2']
#dft=dft.append(listA_concatenated_match_LR1)
dft=pd.concat([dft,listA_concatenated_match_LR1])
mid=mid+1
return dft
#Get non-targeting lists
def get_lists_non_targeting(ref_list,list_found_ref,list_notfound_ref):
#This module retrieves guide_id and searches for guide sequences from the table
#st.table(ref_list)
a_ref=[]
for i in range(len(ref_list)):
a_ref.append(ref_list.sgID_AB.values[i].split('|')[0])
a_ref.append(ref_list.sgID_AB.values[i].split('|')[1])
set_found0_ref=[]
for i in range(len(a_ref)):
set_found0_ref.append(list_found_ref[list_found_ref['gene']==a_ref[i]])
list_concatenated_found_ref = pd.concat(set_found0_ref)
list_concatenated_match_ref = list_concatenated_found_ref[list_concatenated_found_ref.num_mismatch == 0] #only select guides with zero mismatches for match list, MISSMATCH LIST LATER
#get matching to Alternating loci's
list_concatenated_match_alt_ref = list_concatenated_match_ref[~list_concatenated_match_ref['chr'].str.contains('chr')]
#Also remove Alternate loci's data
list_concatenated_match_ref = list_concatenated_match_ref[list_concatenated_match_ref['chr'].str.contains('chr')]
#st.table(list_concatenated_match_ref)
#also create new list with both sgRNAs in one row
dft=pd.DataFrame(columns=['gene','ref_guide', 'chr', 'position', 'mutated_guide', 'strand', 'num_mismatch'])
if list_concatenated_match_ref.shape[0]>0:
t=list_concatenated_match_ref.reset_index(drop=True)
#st.table(t)
##########
#check even/odd entries
if t.shape[0]==1:
t1=t.loc[t.index.repeat(2)].reset_index(drop=True)
#st.write(t1)
dft=assemble_tbl(t1)
elif t.shape[0]%2==0: #even
dft=assemble_tbl(t)
else: #odd
t1 = pd.DataFrame(columns=['gene','ref_guide', 'chr', 'position', 'mutated_guide', 'strand', 'num_mismatch'])
i=0
while i 0]
list_concatenated_mutated_ref=list_concatenated_mutated_ref.sort_values('position')
#Also remove Alternate loci's data
list_concatenated_mutated_alt_ref = list_concatenated_mutated_ref[~list_concatenated_mutated_ref['chr'].str.contains('chr')]
list_concatenated_mutated_ref = list_concatenated_mutated_ref[list_concatenated_mutated_ref['chr'].str.contains('chr')]
dft_mut = pd.DataFrame(columns=['sgID_1','sgRNA_1','chr_sgRNA_1','position_sgRNA_1','sgID_2','sgRNA_2','chr_sgRNA_2','position_sgRNA_2', 'sgID_1_2'])
if list_concatenated_mutated_ref.shape[0]>0:
dft_mut = get_mutated_res(list_concatenated_mutated_ref)
#check not found
seta_notfound0_ref=list_notfound_ref[list_notfound_ref['gene']==a_ref[0]]
seta_notfound1_ref=list_notfound_ref[list_notfound_ref['gene']==a_ref[1]]
#st.write(list_notfound_ref[list_notfound_ref['gene']==a_ref[0]])
#st.write(seta_notfound0_ref)
#st.write(seta_notfound1_ref)
#add guideflg1 to return which guide is found
guideflg1=0
if seta_notfound0_ref.shape[0]>0:
guideflg1=2
if seta_notfound1_ref.shape[0]>0:
guideflg1=1
list_concatenated_notfound_ref = pd.concat([seta_notfound0_ref,seta_notfound1_ref])
#st.table(a_ref)
#st.table(seta_notfound1_ref)
#st.table(dft)
#st.table(dft_mut)
return dft, dft_mut,list_concatenated_notfound_ref,list_concatenated_match_ref,list_concatenated_mutated_ref,list_concatenated_match_alt_ref,list_concatenated_mutated_alt_ref,guideflg1
###########
#Get All Guides Stats
#def process_all_guides(glist,list,ref_type,guide_type):
def process_all_guides(glist,for_list,f_list,nf_list):
#st.write(type(glist))
#st.table(for_list)
#for_list=for_list.reset_index()
variant_set=glist['gene']
dft_c = pd.DataFrame(columns=['gene','guide_type','protospacer_A','protospacer_B'])
dft_resc=pd.DataFrame(columns=['sgID_1', 'sgRNA_1', 'chr_sgRNA_1', 'position_sgRNA_1', 'sgID_2', 'sgRNA_2', 'chr_sgRNA_2', 'position_sgRNA_2', 'sgID_1_2'])
dft_res_mutc=pd.DataFrame(columns=['sgID_1', 'sgRNA_1', 'chr_sgRNA_1', 'position_sgRNA_1', 'sgID_2', 'sgRNA_2', 'chr_sgRNA_2', 'position_sgRNA_2', 'sgID_1_2'])
dft_notfoundc=pd.DataFrame(columns=['gene','ref_guide'])
df_matched_guides_ref = pd.DataFrame(columns=['gene','ref_guide', 'chr', 'position', 'mutated_guide', 'strand', 'num_mismatch'])
df_matched_alt_ref = pd.DataFrame(columns=['gene','ref_guide', 'chr', 'position', 'mutated_guide', 'strand', 'num_mismatch'])
df_mutated_guides_ref = pd.DataFrame(columns=['gene','ref_guide', 'chr', 'position', 'mutated_guide', 'strand', 'num_mismatch'])
df_mutated_guides_alt_ref = pd.DataFrame(columns=['gene','ref_guide', 'chr', 'position', 'mutated_guide', 'strand', 'num_mismatch'])
#st.table(for_list)
for i in range(variant_set.shape[0]):
#st.write(variant_set.iloc[i])
ref_listC=for_list[for_list['sgID_AB']==variant_set.iloc[i]][['guide_type','protospacer_A','protospacer_B','sgID_AB']]
ref_listC =ref_listC[['sgID_AB','guide_type','protospacer_A','protospacer_B']]
#st.table(ref_listC)
#st.table(ref_listC)
res,res_mut,res_notfound,list_match,list_mutated,list_match_alt,list_mutated_alt,gflgc1=get_lists_non_targeting(ref_listC,f_list,nf_list)
#dft_c=dft_c.append(ref_listC)
if res.shape[0]>0:
dft_resc=pd.concat([dft_resc,res])
if res_mut.shape[0]>0:
dft_res_mutc=pd.concat([dft_res_mutc,res_mut])
if res_notfound.shape[0]>0:
dft_notfoundc= pd.concat([dft_notfoundc,res_notfound])
if list_match.shape[0]>0:
df_matched_guides_ref= pd.concat([df_matched_guides_ref,list_match])
if list_mutated.shape[0]>0:
df_mutated_guides_ref= pd.concat([df_mutated_guides_ref,list_mutated])
if list_match_alt.shape[0]>0:
df_matched_alt_ref=pd.concat([df_matched_alt_ref,list_mutated])
if list_mutated_alt.shape[0]>0:
df_mutated_guides_alt_ref=pd.concat([df_mutated_guides_alt_ref,list_mutated_alt])
if df_matched_guides_ref.shape[0]>0:
#st.write(type(df_matched_guides_ref['gene']))
gl=df_matched_guides_ref['gene']
dupesm=gl[gl.duplicated()]
if df_mutated_guides_ref.shape[0]>0:
gl=df_mutated_guides_ref['gene']
dupesmu=gl[gl.duplicated()]
#now check common between matched and mutated
# if dupesm.shape[0]>0 and dupesmu.shape[0]>0:
# common_list = set(dupesm).intersection(dupesmu)
# st.table(common_list)
# st.write('common guides between matched and mutated lists are: '+len(common_list))
if df_matched_guides_ref.shape[0]>0:
if dupesm.shape[0]>0:
st.write('**Matched Guides**: '+str(df_matched_guides_ref.shape[0])+' and: '+str(dupesm.shape[0])+' are repeated guides (matched to multiple locations)')
tbl_disp(df_matched_guides_ref,'select_genes','SetC_GRCh38',17)
#st.table(dupesm,'select_genes','SetC_GRCh38',17)
tbl_disp(dupesm,'select_genes','SetC_GRCh38',17)
else:
st.write('**Matched Guides**: '+str(df_matched_guides_ref.shape[0]))
tbl_disp(df_matched_guides_ref,'select_genes','SetC_GRCh38',17)
if df_matched_alt_ref.shape[0]>0:
st.write('**Matched Guides to Alt Loci**: '+str(df_matched_alt_ref.shape[0]))
tbl_disp(df_matched_alt_ref,'select_genes','SetC_GRCh38',17)
if df_mutated_guides_ref.shape[0]>0:
#gl=df_mutated_guides_ref['gene']
#dupesmu=gl[gl.duplicated()]
if dupesmu.shape[0]>0:
st.write('**Mutated Guides (some might have >1 guides)**: '+str(df_mutated_guides_ref.shape[0])+' and: '+str(dupesmu.shape[0])+' are repeated guides')
tbl_disp(df_mutated_guides_ref,'select_genes','SetC_GRCh38',18)
#st.table(dupesmu)
else:
st.write('**Mutated Guides (some might have >1 guides)**: '+str(df_mutated_guides_ref.shape[0]))
tbl_disp(df_mutated_guides_ref,'select_genes','SetC_GRCh38',18)
if df_mutated_guides_alt_ref.shape[0]>0:
st.write('**Mutated Guides to Alt Loci**: '+str(df_mutated_guides_alt_ref.shape[0]))
tbl_disp(df_mutated_guides_alt_ref,'select_genes','SetC_GRCh38',18)
if dft_notfoundc.shape[0]>0:
st.write('**Guides Not Found**: '+str(dft_notfoundc.shape[0]))
tbl_disp(dft_notfoundc,'select_genes','SetC_GRCh38',19)
#CALC BASED ON LIST, GUIDE TYPE AND REFERENCE
#END GENERAL FUNCTIONS
st.title('Long Read Guides Search')
st.write('**Important:** Please note that **MTMR3** is not present in guides_c list, so we have **removed it from list a and list b**')
#tbl_disp(regulara,'variant','ref_guides',0,1)
Calc = st.sidebar.radio(
"",
('ReadME', 'Single/Multiple Guides','All','Not_Found'))
if Calc == 'ReadME':
expander = st.expander("How to use this app")
#st.header('How to use this app')
expander.markdown('Please select **Single Gene** OR **Multiple Genes** Menue checkbox from the sidebar')
expander.markdown('Select a Gene (from genes dropdown list) OR Multiple genes (from table)')
expander.markdown('A table showing all reference gudies from three LISTS will appear in the main panel. **Please not some of the genes (for example A1BG and GJB7) have multiple guide pairs and all of these are selected.**')
expander.markdown('To see results for each of the selected reference guide from ListA, ListB and ListC, Please select respective checkbox')
expander.markdown('Results are shown as two tables, **Matched** and **Mutated** guides tables and **NOT FOUND** table if guides are not found in GRCh38 and LR reference fasta files')
expander.markdown('**Mutated** guides table shows the genomic postion in GRCh38 and LR Fasta file along other fields. **If a guide is found in GRCh38 but not in LR fasta, then corresponding columns will be NA**')
expander.markdown('**Mutated** guides table shows the genomic postion in GRCh38 and LR Fasta file along other fields. **If a guide is found in GRCh38 but not in LR fasta, then corresponding columns will be NA**')
expander1 = st.expander('Introduction')
expander1.markdown(
""" This app helps navigate all probable genomic **miss-matched/Mutations (upto 2 bp)** for a given sgRNA (from 3 lists of CRISPRi dual sgRNA libraries) in GRCh38 reference fasta and a Reference fasta generated from BAM generated against KOLF2.1J longread data.
"""
)
expander1.markdown('Merged bam file was converted to fasta file using following steps:')
expander1.markdown('- samtools mpileup to generate bcf file')
expander1.markdown('- bcftools to generate vcf file')
expander1.markdown('- bcftools consensus to generate fasta file')
expander1.markdown('A GPU based [Cas-OFFinder](http://www.rgenome.net/cas-offinder/) tool was used to find off-target sequences (upto 2 miss-matched) for each geiven reference guide against GRCh38 and LR fasta references.')
elif Calc=='Single/Multiple Guides':
flg_a_fount=0
flg_b_fount=0
flg_c_fount=0
#st.write('**General Stats:**')
#st.write('**GRCh38 Stats: Guides Found: **'+str(lsita_ref_found_sz)+"/"+str(lista_sz))
with st.form(key='columns_in_form'):
c2, c3 = st.columns(2)
with c2:
multi_genes = st.multiselect(
'Please select genes list to start processing',
variants_s)
Updated=st.form_submit_button(label = 'Update')
listA_concatenated_orig = pd.DataFrame(columns=['gene','sgID_AB','guide_type','protospacer_A','protospacer_B'])
reflistA_concatenated = pd.DataFrame(columns=['gene','sgID_AB','guide_type','protospacer_A','protospacer_B'])
reflistB_concatenated = pd.DataFrame(columns=['gene','sgID_AB','guide_type','protospacer_A','protospacer_B'])
reflistC_concatenated = pd.DataFrame(columns=['gene','sgID_AB','guide_type','protospacer_A','protospacer_B'])
for variant in multi_genes:
ref_listA=listA[listA['gene']==variant][['gene','guide_type','protospacer_A','protospacer_B','sgID_AB']]
ref_listA = ref_listA[['gene','sgID_AB','guide_type','protospacer_A','protospacer_B']]
#ref_listA.columns=['gene','guide_type','protospacer_A','protospacer_B']
reflistA_concatenated=pd.concat([reflistA_concatenated,ref_listA])
ref_listB=listB[listB['gene']==variant][['gene','guide_type','protospacer_A','protospacer_B','sgID_AB']]
ref_listB = ref_listB[['gene','sgID_AB','guide_type','protospacer_A','protospacer_B']]
#ref_listB.columns=['gene','guide_type','protospacer_A','protospacer_B']
reflistB_concatenated=pd.concat([reflistB_concatenated,ref_listB])
ref_listC=listC[listC['gene']==variant][['gene','guide_type','protospacer_A','protospacer_B','sgID_AB']]
ref_listC = ref_listC[['gene','sgID_AB','guide_type','protospacer_A','protospacer_B']]
#ref_listC.columns=['gene','guide_type','protospacer_A','protospacer_B']
reflistC_concatenated=pd.concat([reflistC_concatenated,ref_listC])
listA_concatenated_orig = pd.concat([listA_concatenated_orig,ref_listA,ref_listB,ref_listC])
if listA_concatenated_orig.shape[0] > 0:
#st.markdown(table_edit,unsafe_allow_html=True)
st.write('**Input** Guides (all 6 from 3 sets).')
st.write('**Please Select Guides common to ALL 3 Lists to procede further Processing**')
st.markdown(caution_genes,unsafe_allow_html=True)
with st.form(key='columns_in_form_a'):
c2, c3 = st.columns([10,2])
with c2:
get_table_order=tbl_disp(listA_concatenated_orig,'variant','ref_guides',111,0)
with c3:
ref_sel = st.radio("Select Reference",
('CHM13','GRCh38'),
horizontal=True)
Updated1=st.form_submit_button(label = 'Generate Order Ready Table')
if not isinstance(get_table_order, type(None)): # and Updated1:# and get_table_order.shape[0]>0:
if ref_sel=='GRCh38':
list_founda=listA_found_ref
list_notfounda=listA_notfound_ref
list_foundb=listB_found_ref
list_notfoundb=listB_notfound_ref
list_foundc=listC_found_ref
list_notfoundc=listC_notfound_ref
else:
list_founda=listA_found_lr
list_notfounda=listA_notfound_lr
list_foundb=listB_found_lr
list_notfoundb=listB_notfound_lr
list_foundc=listC_found_lr
list_notfoundc=listC_notfound_lr
variant_set12=get_table_order[get_table_order['guide_type']=='1-2']['sgID_AB']
variant_set34=get_table_order[get_table_order['guide_type']=='3-4']['sgID_AB']
variant_set56=get_table_order[get_table_order['guide_type']=='5-6']['sgID_AB']
#st.table(variant_set12)
#st.write(variant_set12)
if variant_set12.shape[0]==variant_set34.shape[0]==variant_set56.shape[0]:
#########Here we call order ready table
#order_ready_tbl_GRCh38(variant_set12,variant_set34,variant_set56)
#order_ready_tbl_CHM13(variant_set12,variant_set34,variant_set56,listA_found_lr,listA_notfound_lr,listB_found_lr,listB_notfound_lr,listC_found_lr,listC_notfound_lr)
order_ready_tbl_CHM13(variant_set12,variant_set34,variant_set56,list_founda,list_notfounda,list_foundb,list_notfoundb,list_foundc,list_notfoundc,ref_sel)
########END ORDER READY TABLE
elif variant_set12.shape[0]!=variant_set34.shape[0]:
st.markdown("""**SetA and SetB guides are not same, Please correct the problem and re-run**""",unsafe_allow_html=True)
elif variant_set12.shape[0]!=variant_set56.shape[0]:
st.markdown("""**SetA and SetC guides are not same, Please correct the problem and re-run**""",unsafe_allow_html=True)
elif variant_set34.shape[0]!=variant_set56.shape[0]:
st.markdown("""**SetB and SetC guides are not same, Please correct the problem and re-run**""",unsafe_allow_html=True)
else:
st.markdown("""**Probably Mixed guides are selected from three lists, Please correct the problem and re-run**""",unsafe_allow_html=True)
else:
st.write('**Please select guides and Press Update Button to Begin Processing**')
if 'get_table_order' in locals():
if not isinstance(get_table_order, type(None)):
st.write('**For List wise results, Please select a List**')
reflistA_concatenated=get_table_order[get_table_order['guide_type']=='1-2']
reflistA_concatenated.drop("_selectedRowNodeInfo",axis=1,inplace=True)
reflistB_concatenated=get_table_order[get_table_order['guide_type']=='3-4']
reflistB_concatenated.drop("_selectedRowNodeInfo",axis=1,inplace=True)
reflistC_concatenated=get_table_order[get_table_order['guide_type']=='5-6']
reflistC_concatenated.drop("_selectedRowNodeInfo",axis=1,inplace=True)
#st.write('**Important:** If a guides is **not** in **found, mutated and not_found list (such as GSTT1), then it is found in Alternative Loci and Removed**')
with st.form(key='columns_in_form_lists'):
c2, c3= st.columns([10,1])#([10,10])
with c2:
List_Selected = st.selectbox('Please select list',
('','ListA','ListB','ListC'))
Show_ListResults=st.form_submit_button(label = 'GO')
#ListARes = st.checkbox('Results For SetA',key=300)
if List_Selected=='ListA':# and not isinstance(get_table, type(None)):#get_table!=None:
ref_list= listA
st.write('**Please select Guides From Table Below to processes from ListA**')
with st.form(key='columns_in_form_listsA'):
c2, c3= st.columns([100,2])#([10,10])
with c2:
get_table=tbl_disp(reflistA_concatenated,variant,'ref_guides',2,0)
#List_Selected = st.selectbox('Please select list',
#('ListA','ListB','ListC'))
Show_ListResults=st.form_submit_button(label = 'Show ListA Results')
#st.write('**Please select Guides From Table Below to processes from ListA**')
#get_table=tbl_disp(reflistA_concatenated,variant,'ref_guides',2,0)
if not isinstance(get_table, type(None)):
if ref_sel=='GRCh38':
list_found=listA_found_ref
list_notfound=listA_notfound_ref
else:
list_found=listA_found_lr
list_notfound=listA_notfound_lr
variant_set=get_table['sgID_AB']
dft_a = pd.DataFrame(columns=['gene','guide_type','protospacer_A','protospacer_B'])
dft_resa=pd.DataFrame(columns=['sgID_1', 'sgRNA_1', 'chr_sgRNA_1', 'position_sgRNA_1', 'sgID_2', 'sgRNA_2', 'chr_sgRNA_2', 'position_sgRNA_2', 'sgID_1_2'])
dft_res_muta=pd.DataFrame(columns=['sgID_1', 'sgRNA_1', 'chr_sgRNA_1', 'position_sgRNA_1', 'sgID_2', 'sgRNA_2', 'chr_sgRNA_2', 'position_sgRNA_2', 'sgID_1_2'])
dft_notfounda=pd.DataFrame(columns=['gene','ref_guide'])
df_matched_guides_ref = pd.DataFrame(columns=['gene','ref_guide', 'chr', 'position', 'mutated_guide', 'strand', 'num_mismatch'])
df_mutated_guides_ref = pd.DataFrame(columns=['gene','ref_guide', 'chr', 'position', 'mutated_guide', 'strand', 'num_mismatch'])
#CHECK FOR GRCh38
for i in range(variant_set.shape[0]):
#ref_listA=listA[listA['sgID_AB']==variant_set.iloc[i]['gene']][['guide_type','protospacer_A','protospacer_B','sgID_AB']]
ref_listA=ref_list[ref_list['sgID_AB']==variant_set.iloc[i]][['guide_type','protospacer_A','protospacer_B','sgID_AB']]
ref_listA = ref_listA[['sgID_AB','guide_type','protospacer_A','protospacer_B']]
#ref_listA.columns=['gene','guide_type','protospacer_A','protospacer_B']
#st.table(ref_listA)
res,res_mut,res_notfound,list_match,list_mutated,gflga1=get_lists(ref_listA,list_found,list_notfound)
#dft_a=dft_a.append(ref_listA)
if res.shape[0]>0:
dft_resa=pd.concat([dft_resa,res])
if res_mut.shape[0]>0:
dft_res_muta=pd.concat([dft_res_muta,res_mut])
if res_notfound.shape[0]>0:
dft_notfounda= pd.concat([dft_notfounda,res_notfound])
if list_match.shape[0]>0:
df_matched_guides_ref= pd.concat([df_matched_guides_ref,list_match])
if list_mutated.shape[0]>0:
df_mutated_guides_ref= pd.concat([df_mutated_guides_ref,list_mutated])
#st.write('Selected Reference Guides for **Set A**')
#tbl_disp(dft_a,'All','ReferenceGuides',0)
st.write('**Important:** If a guides is **not** in **found, mutated and not_found list (such as GSTT1), then it is found in Alternative Loci and Removed**')
if dft_resa.shape[0]>0:
st.write('Matched to '+ref_sel+' Reference Guides for **Set A**')
tbl_disp(dft_resa,'select_genes','SetA_GRCh38',3)
elif dft_res_muta.shape[0]>0:
st.write('None of the guides Matched, So reporting **Mutated to** '+ref_sel+' Reference Guides for **Set A**')
st.markdown(caution1,unsafe_allow_html=True)
tbl_disp(dft_res_muta,'select_genes','SetA_Mutated_GRCh38',4)
if dft_notfounda.shape[0]>0:
st.write('**SetA Guides Not Found in '+ref_sel+' (None of the guides are Matched/Mutated)**')
#tbl_disp(dft_notfound,'select_genes','SetA_Notfound_GRCh38')
st.table(dft_notfounda)
#ListBRes = st.checkbox('Results For SetB',key=40)
if List_Selected=='ListB': # and not isinstance(get_table, type(None)):#get_table!=None:
ref_list= listB
st.write('**Please select Guides From Table Below to processes from ListB**')
with st.form(key='columns_in_form_listsA'):
c2, c3= st.columns([100,2])#([10,10])
with c2:
get_table=tbl_disp(reflistB_concatenated,variant,'ref_guides',2,0)
Show_ListResults=st.form_submit_button(label = 'Show ListB Results')
if not isinstance(get_table, type(None)):
if ref_sel=='GRCh38':
list_found=listB_found_ref
list_notfound=listB_notfound_ref
else:
list_found=listB_found_lr
list_notfound=listB_notfound_lr
#variant_set=get_table[['gene']]
variant_set=get_table['sgID_AB']
dft_b = pd.DataFrame(columns=['gene','guide_type','protospacer_A','protospacer_B'])
dft_resb=pd.DataFrame(columns=['sgID_1', 'sgRNA_1', 'chr_sgRNA_1', 'position_sgRNA_1', 'sgID_2', 'sgRNA_2', 'chr_sgRNA_2', 'position_sgRNA_2', 'sgID_1_2'])
dft_res_mutb=pd.DataFrame(columns=['sgID_1', 'sgRNA_1', 'chr_sgRNA_1', 'position_sgRNA_1', 'sgID_2', 'sgRNA_2', 'chr_sgRNA_2', 'position_sgRNA_2', 'sgID_1_2'])
dft_notfoundb=pd.DataFrame(columns=['gene','ref_guide'])
df_matched_guides_ref = pd.DataFrame(columns=['gene','ref_guide', 'chr', 'position', 'mutated_guide', 'strand', 'num_mismatch'])
df_mutated_guides_ref = pd.DataFrame(columns=['gene','ref_guide', 'chr', 'position', 'mutated_guide', 'strand', 'num_mismatch'])
#CHECK FOR GRCh38
for i in range(variant_set.shape[0]):
#ref_listB=listB[listB['gene']==variant_set.iloc[i]['gene']][['guide_type','protospacer_A','protospacer_B','sgID_AB']]
ref_listB=ref_list[ref_list['sgID_AB']==variant_set.iloc[i]][['guide_type','protospacer_A','protospacer_B','sgID_AB']]
ref_listB =ref_listB[['sgID_AB','guide_type','protospacer_A','protospacer_B']]
#ref_listB.columns=['gene','guide_type','protospacer_A','protospacer_B']
res,res_mut,res_notfound,list_match,list_mutated,gflgb1=get_lists(ref_listB,list_found,list_notfound)
#dft_b=dft_b.append(ref_listB)
if res.shape[0]>0:
dft_resb=pd.concat([dft_resb,res])
if res_mut.shape[0]>0:
dft_res_mutb=pd.concat([dft_res_mutb,res_mut])
if res_notfound.shape[0]>0:
dft_notfoundb= pd.concat([dft_notfoundb,res_notfound])
if list_match.shape[0]>0:
df_matched_guides_ref= pd.concat([df_matched_guides_ref,list_match])
if list_mutated.shape[0]>0:
df_mutated_guides_ref= pd.concat([df_mutated_guides_ref,list_mutated])
#st.write('Selected Reference Guides for **Set B**')
#tbl_disp(dft_b,'All','ReferenceGuides',0)
st.write('**Important:** If a guides is **not** in **found, mutated and not_found list (such as GSTT1), then it is found in Alternative Loci and Removed**')
if dft_resb.shape[0]>0:
st.write('Matched to '+ref_sel+' Reference Guides for **Set B**')
tbl_disp(dft_resb,'select_genes','SetB_GRCh38',10)
elif dft_res_mutb.shape[0]>0:
st.write('None of the guides Matched, So reporting **Mutated to '+ref_sel+' Reference Guides for **Set B**')
st.markdown(caution1,unsafe_allow_html=True)
tbl_disp(dft_res_mutb,'select_genes','SetB_Mutated_GRCh38',11)
if dft_notfoundb.shape[0]>0:
st.write('**SetB Guides Not Found in '+ref_sel+' (None of the guides are Matched/Mutated)**')
#tbl_disp(dft_notfound,'select_genes','SetA_Notfound_GRCh38')
st.table(dft_notfoundb)
#ListCRes = st.checkbox('Results For SetC',key=50)
if List_Selected=='ListC': # and not isinstance(get_table, type(None)):#get_table!=None:
ref_list= listC
st.write('**Please select Guides From Table Below to processes from ListC**')
with st.form(key='columns_in_form_listsA'):
c2, c3= st.columns([100,2])#([10,10])
with c2:
get_table=tbl_disp(reflistC_concatenated,variant,'ref_guides',2,0)
Show_ListResults=st.form_submit_button(label = 'Show ListC Results')
if not isinstance(get_table, type(None)):
if ref_sel=='GRCh38':
list_found=listC_found_ref
list_notfound=listC_notfound_ref
else:
list_found=listC_found_lr
list_notfound=listC_notfound_lr
variant_set=get_table['sgID_AB']
dft_c = pd.DataFrame(columns=['gene','guide_type','protospacer_A','protospacer_B'])
dft_resc=pd.DataFrame(columns=['sgID_1', 'sgRNA_1', 'chr_sgRNA_1', 'position_sgRNA_1', 'sgID_2', 'sgRNA_2', 'chr_sgRNA_2', 'position_sgRNA_2', 'sgID_1_2'])
dft_res_mutc=pd.DataFrame(columns=['sgID_1', 'sgRNA_1', 'chr_sgRNA_1', 'position_sgRNA_1', 'sgID_2', 'sgRNA_2', 'chr_sgRNA_2', 'position_sgRNA_2', 'sgID_1_2'])
dft_notfoundc=pd.DataFrame(columns=['gene','ref_guide'])
df_matched_guides_ref = pd.DataFrame(columns=['gene','ref_guide', 'chr', 'position', 'mutated_guide', 'strand', 'num_mismatch'])
df_mutated_guides_ref = pd.DataFrame(columns=['gene','ref_guide', 'chr', 'position', 'mutated_guide', 'strand', 'num_mismatch'])
#CHECK FOR GRCh38
for i in range(variant_set.shape[0]):
#ref_listC=listC[listC['gene']==variant_set.iloc[i]['gene']][['guide_type','protospacer_A','protospacer_B','sgID_AB']]
ref_listC=ref_list[ref_list['sgID_AB']==variant_set.iloc[i]][['guide_type','protospacer_A','protospacer_B','sgID_AB']]
ref_listC =ref_listC[['sgID_AB','guide_type','protospacer_A','protospacer_B']]
#ref_listC.columns=['gene','guide_type','protospacer_A','protospacer_B']
res,res_mut,res_notfound,list_match,list_mutated,gflgc1=get_lists(ref_listC,list_found,list_notfound)
#dft_c=dft_c.append(ref_listC)
if res.shape[0]>0:
dft_resc=pd.concat([dft_resc,res])
if res_mut.shape[0]>0:
dft_res_mutc=pd.concat([dft_res_mutc,res_mut])
if res_notfound.shape[0]>0:
dft_notfoundc= pd.concat([dft_notfoundc,res_notfound])
if list_match.shape[0]>0:
df_matched_guides_ref= pd.concat([df_matched_guides_ref,list_match])
if list_mutated.shape[0]>0:
df_mutated_guides_ref= pd.concat([df_mutated_guides_ref,list_mutated])
#st.write('Selected Reference Guides for **Set C**')
#tbl_disp(dft_c,'All','ReferenceGuides',0)
st.write('**Important:** If a guides is **not** in **found, mutated and not_found list (such as GSTT1), then it is found in Alternative Loci and Removed**')
if dft_resc.shape[0]>0:
st.write('Matched to '+ref_sel+' Reference Guides for **Set C**')
tbl_disp(dft_resc,'select_genes','SetC_GRCh38',17)
elif dft_res_mutc.shape[0]>0:
st.write('None of the guides Matched, So reporting **Mutated to '+ref_sel+' Reference Guides for **Set C**')
st.markdown(caution1,unsafe_allow_html=True)
tbl_disp(dft_res_mutc,'select_genes','SetC_Mutated_GRCh38',18)
if dft_notfoundc.shape[0]>0:
st.write('**SetC Guides Not Found in '+ref_sel+' (None of the guides are Matched/Mutated)**')
#tbl_disp(dft_notfound,'select_genes','SetA_Notfound_GRCh38')
st.table(dft_notfoundc)
elif Calc=='Not_Found':
ListAResNotFound = st.checkbox('Results For SetA',key=30)
if ListAResNotFound and listA_notfound_lr.shape[0]>0:
listA_notfound_LR_sorted=listA_notfound_lr.sort_values('gene')
sz1a=listA_notfound_LR_sorted.shape[0]
vaild_guides_a = listA_notfound_LR_sorted[~listA_notfound_LR_sorted['gene'].str.contains("non")]
sz2a=vaild_guides_a.shape[0]
st.write(str(sz2a)+"/"+str(sz1a)+' Guides Not Found')
tbl_disp(vaild_guides_a,'all_not_found','SetA_KOLF2.1',23,0)
#now get gene names only
genesa=vaild_guides_a['gene'].str.split('_').str[0]
genesa1=genesa[genesa.duplicated(keep=False)]
genesa2=genesa1.unique()
pair_lista=[]
for g in genesa2:
g1=vaild_guides_a[vaild_guides_a['gene'].str.contains(g)]
g2=g1.reset_index(drop=True)
pair_lista.append([g2.gene[0],g2.ref_guide[0],g2.gene[1],g2.ref_guide[1]])
pair_missmatch_a = pd.DataFrame(pair_lista, columns=['sgID_1','sgRNA_1','sgID_2','sgRNA_2'])
sz22a=pair_missmatch_a.shape[0]
st.write(str(sz22a)+"/"+str(sz2a)+' Paired Guides Not Found')
tbl_disp(pair_missmatch_a,'all_not_found','SetA_KOLF2.1',23,0)
non_targeting_guides_a = listA_notfound_LR_sorted[listA_notfound_LR_sorted['gene'].str.contains("non")]
sz3a=non_targeting_guides_a.shape[0]
st.write(str(sz3a)+"/"+str(sz1a)+' no-targeting Guides Not Found')
tbl_disp(non_targeting_guides_a,'all_not_found','SetA_KOLF2.1',23,0)
ListBResNotFound = st.checkbox('Results For SetB',key=40)
if ListBResNotFound:
listB_notfound_LR_sorted=listB_notfound_lr.sort_values('gene')
sz1b=listB_notfound_LR_sorted.shape[0]
vaild_guides_b = listB_notfound_LR_sorted[~listB_notfound_LR_sorted['gene'].str.contains("non")]
sz2b=vaild_guides_b.shape[0]
st.write(str(sz2b)+"/"+str(sz1b)+' Guides Not Found')
tbl_disp(vaild_guides_b,'all_not_found','SetA_KOLF2.1',23,0)
#now get gene names only
genesb=vaild_guides_b['gene'].str.split('_').str[0]
genesb1=genesb[genesb.duplicated(keep=False)]
genesb2=genesb1.unique()
pair_listb=[]
for g in genesb2:
g1=vaild_guides_b[vaild_guides_b['gene'].str.contains(g)]
g2=g1.reset_index(drop=True)
pair_listb.append([g2.gene[0],g2.ref_guide[0],g2.gene[1],g2.ref_guide[1]])
pair_missmatch_b = pd.DataFrame(pair_listb, columns=['sgID_1','sgRNA_1','sgID_2','sgRNA_2'])
sz22b=pair_missmatch_b.shape[0]
st.write(str(sz22b)+"/"+str(sz2b)+' Paired Guides Not Found')
tbl_disp(pair_missmatch_b,'all_not_found','SetA_KOLF2.1',23,0)
non_targeting_guides_b = listB_notfound_LR_sorted[listB_notfound_LR_sorted['gene'].str.contains("non")]
sz3b=non_targeting_guides_b.shape[0]
st.write(str(sz3b)+"/"+str(sz1b)+' no-targeting Guides Not Found')
tbl_disp(non_targeting_guides_b,'all_not_found','SetA_KOLF2.1',23,0)
ListCResNotFound = st.checkbox('Results For SetC',key=50)
if ListCResNotFound:
listC_notfound_LR_sorted=listC_notfound_lr.sort_values('gene')
sz1c=listC_notfound_LR_sorted.shape[0]
vaild_guides_c = listC_notfound_LR_sorted[~listC_notfound_LR_sorted['gene'].str.contains("non")]
sz2c=vaild_guides_c.shape[0]
st.write(str(sz2c)+"/"+str(sz1c)+' Guides Not Found')
tbl_disp(vaild_guides_c,'all_not_found','SetA_KOLF2.1',23,0)
#now get gene names only
genesc=vaild_guides_c['gene'].str.split('_').str[0]
genesc1=genesc[genesc.duplicated(keep=False)]
genesc2=genesc1.unique()
pair_listc=[]
for g in genesc2:
g1=vaild_guides_c[vaild_guides_c['gene'].str.contains(g)]
g2=g1.reset_index(drop=True)
pair_listc.append([g2.gene[0],g2.ref_guide[0],g2.gene[1],g2.ref_guide[1]])
pair_missmatch_c = pd.DataFrame(pair_listc, columns=['sgID_1','sgRNA_1','sgID_2','sgRNA_2'])
sz22c=pair_missmatch_c.shape[0]
st.write(str(sz22c)+"/"+str(sz2c)+' Paired Guides Not Found')
tbl_disp(pair_missmatch_c,'all_not_found','SetA_KOLF2.1',23,0)
non_targeting_guides_c = listC_notfound_LR_sorted[listC_notfound_LR_sorted['gene'].str.contains("non")]
sz3c=non_targeting_guides_c.shape[0]
st.write(str(sz3c)+"/"+str(sz1c)+' no-targeting Guides Not Found')
tbl_disp(non_targeting_guides_c,'all_not_found','SetA_KOLF2.1',23,0)
else:
guidetype = st.radio("Select Guide Type",('Non-targetting','Regular'),horizontal=True)
if guidetype=='Non-targetting':
with st.form(key='columns_in_form_non'):
c2, c3 = st.columns([5,5])#([10,10])
with c2:
guides_List = st.selectbox('Please select list',
('ListA','ListB','ListC'))
with c3:
ref_type_sel_non = st.radio("Select Reference",
('CHM13','GRCh38'),
horizontal=True)
Show_Results_non=st.form_submit_button(label = 'Non-targeting Guides Results')
if Show_Results_non and guides_List=='ListA':
for_list=listA
if ref_type_sel_non=='GRCh38':
f_list=listA_found_ref
nf_list=listA_notfound_ref
else:
f_list=listA_found_lr
nf_list=listA_notfound_lr
st.write('Total: '+str(len(non_targeting_lista))+' Non-targeting Guide pairs and '+str(2*len(non_targeting_lista))+' single guides in ListA')
process_all_guides(pd.DataFrame(pd.Series(non_targeting_lista,name='gene')),for_list,f_list,nf_list)
if Show_Results_non and guides_List=='ListB':
for_list=listB
if ref_type_sel_non=='GRCh38':
f_list=listB_found_ref
nf_list=listB_notfound_ref
else:
f_list=listB_found_lr
nf_list=listB_notfound_lr
st.write('Total: '+str(len(non_targeting_listb))+' Non-targeting Guide pairs and '+str(2*len(non_targeting_listb))+' single guides in ListA')
process_all_guides(pd.DataFrame(pd.Series(non_targeting_listb,name='gene')),for_list,f_list,nf_list)
if Show_Results_non and guides_List=='ListC':
for_list=listC
if ref_type_sel_non=='GRCh38':
f_list=listC_found_ref
nf_list=listC_notfound_ref
else:
f_list=listC_found_lr
nf_list=listC_notfound_lr
st.write('Total: '+str(len(non_targeting_listc))+' Non-targeting Guide pairs and '+str(2*len(non_targeting_listc))+' single guides in ListA')
process_all_guides(pd.DataFrame(pd.Series(non_targeting_listc,name='gene')),for_list,f_list,nf_list)
elif guidetype=='Regular':
st.write('**Maximum End Index=** '+str(regular_lista.shape[0]))
with st.form(key='columns_in_form_regular'):
c2, c3, c4 = st.columns([5,5,5])#([10,10])
with c2:
set_start = int(st.text_input('Start Index', '0'))
with c3:
set_end = int(st.text_input('End Index', str(regular_lista.shape[0])))
with c4:
ref_type_sel = st.radio("Select Reference",
('CHM13','GRCh38'),
horizontal=True)
Show_Results=st.form_submit_button(label = 'Show Regular Guides Results')
if Show_Results:# and guides_List=="ListA":
regular_listc=regular_listc[set_start:set_end]
regular_listb=regular_listb.iloc[set_start:set_end]
regular_lista=regular_lista.iloc[set_start:set_end]
if ref_type_sel=='GRCh38':
list_founda=listA_found_ref
list_notfounda=listA_notfound_ref
list_foundb=listB_found_ref
list_notfoundb=listB_notfound_ref
list_foundc=listC_found_ref
list_notfoundc=listC_notfound_ref
else:
list_founda=listA_found_lr
list_notfounda=listA_notfound_lr
list_foundb=listB_found_lr
list_notfoundb=listB_notfound_lr
list_foundc=listC_found_lr
list_notfoundc=listC_notfound_lr
dupesq=list(duplicates(listA['gene']))
non_targetinga=variantsa1[pd.Series(variantsa1).str.contains('non-targeting')]
regulara=variantsa1[~pd.Series(variantsa1).str.contains('non-targeting')]
st.write('Total: '+str(len(regulara))+' Regular Guide (unique genes only) **Excluding:** '+str(len(non_targetinga))+' Non-targeting pairs **and** '+str(len(dupesq))+' Repeated entries (same gene names)')
order_ready_tbl_CHM13(regular_lista,regular_listb,regular_listc,list_founda,list_notfounda,list_foundb,list_notfoundb,list_foundc,list_notfoundc,ref_type_sel)