absa_evaluator / absa_evaluator.py
HalteroXHunter's picture
update info
12c1471
raw
history blame
10.8 kB
from typing import Dict, List
import evaluate
from datasets import Features, Sequence, Value
from sklearn.metrics import accuracy_score
from itertools import chain
from random import choice
from typing import Any, Dict, List, Optional, Tuple
_CITATION = """
"""
_DESCRIPTION = """
This module provides evaluation metrics for Aspect-Based Sentiment Analysis (ABSA).
The metrics include precision, recall, and F1 score for both aspect terms and category detection.
Additionally it calculates de accuracy for polarities from aspect terms and category detection.
ABSA evaluates the capability of a model to identify and correctly classify the sentiment of specific aspects within a text.
"""
_KWARGS_DESCRIPTION = """
Computes precision, recall, and F1 score for aspect terms and category detection in Aspect-Based Sentiment Analysis (ABSA). Also calculates de accuracy for polarities on each task.
Args:
predictions: List of ABSA predictions with the following structure:
- 'aspects': Sequence of aspect annotations, each with the following keys:
- 'term': Aspect term
- 'polarity': Polarity of the aspect term
- 'category': Sequence of category annotations, each with the following keys:
- 'category': Category
- 'polarity': polarity of the category
references: List of ABSA references with the same structure as predictions.
Returns:
term_extraction_results: f1 score, precision and recall for aspect terms
term_polarity_results_accuracy: accuracy for polarities on aspect terms
category_detection_results: f1 score, precision and recall for category detection
category_polarity_results_accuracy: accuracy for polarities on categories
"""
class AbsaEvaluator(evaluate.Metric):
def _info(self):
return evaluate.MetricInfo(
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=Features(
{
"predictions": Features(
{
"aspects": Features(
{
"term": Sequence(Value("string")),
"polarity": Sequence(Value("string")),
}
),
"category": Features(
{
"category": Sequence(Value("string")),
"polarity": Sequence(Value("string")),
}
),
}
),
"references": Features(
{
"aspects": Features(
{
"term": Sequence(Value("string")),
"polarity": Sequence(Value("string")),
}
),
"category": Features(
{
"category": Sequence(Value("string")),
"polarity": Sequence(Value("string")),
}
),
}
),
}
),
)
def _compute(self, predictions, references):
# preprocess aspect term
(
truth_aspect_terms,
pred_aspect_terms,
truth_term_polarities,
pred_term_polarities,
) = absa_term_preprocess(
references=references,
predictions=predictions,
subtask_key="aspects",
subtask_value="term",
)
# evaluate
term_results = self.semeval_metric(
truth_aspect_terms, pred_aspect_terms
)
term_polarity_acc = accuracy_score(
truth_term_polarities, pred_term_polarities
)
# preprocess category detection
(
truth_categories,
pred_categories,
truth_cat_polarities,
pred_cat_polarities,
) = absa_term_preprocess(
references=references,
predictions=predictions,
subtask_key="category",
subtask_value="category",
)
# evaluate
category_results = self.semeval_metric(
truth_categories, pred_categories
)
cat_polarity_acc = accuracy_score(
truth_cat_polarities, pred_cat_polarities
)
return {
"term_extraction_results": term_results,
"term_polarity_results_accuracy": term_polarity_acc,
"category_detection_results": category_results,
"category_polarity_results_accuracy": cat_polarity_acc,
}
def semeval_metric(
self, truths: List[List[str]], preds: List[List[str]]
) -> Dict[str, float]:
"""
Implements evaluation for extraction tasks using precision, recall, and F1 score.
Parameters:
- truths: List of lists, where each list contains the ground truth labels for a sample.
- preds: List of lists, where each list contains the predicted labels for a sample.
Returns:
- A dictionary containing the precision, recall, F1 score, and counts of common, retrieved, and relevant.
link for code: link for this code: https://github.com/davidsbatista/Aspect-Based-Sentiment-Analysis/blob/1d9c8ec1131993d924e96676fa212db6b53cb870/libraries/baselines.py#L387
"""
b = 1
common, relevant, retrieved = 0.0, 0.0, 0.0
for truth, pred in zip(truths, preds):
common += len([a for a in pred if a in truth])
retrieved += len(pred)
relevant += len(truth)
precision = common / retrieved if retrieved > 0 else 0.0
recall = common / relevant if relevant > 0 else 0.0
f1 = (
(1 + (b**2))
* precision
* recall
/ ((precision * b**2) + recall)
if precision > 0 and recall > 0
else 0.0
)
return {
"precision": precision,
"recall": recall,
"f1_score": f1,
"common": common,
"retrieved": retrieved,
"relevant": relevant,
}
def adjust_predictions(refs, preds, choices):
"""Adjust predictions to match the length of references with either a special token or random choice."""
adjusted_preds = []
for ref, pred in zip(refs, preds):
if len(pred) < len(ref):
missing_count = len(ref) - len(pred)
pred.extend([choice(choices) for _ in range(missing_count)])
adjusted_preds.append(pred)
return adjusted_preds
def extract_aspects(data, specific_key, specific_val):
"""Extracts and returns a list of specified aspect details from the nested 'aspects' data."""
return [item[specific_key][specific_val] for item in data]
def absa_term_preprocess(references, predictions, subtask_key, subtask_value):
"""
Preprocess the terms and polarities for aspect-based sentiment analysis.
Args:
references (List[Dict]): A list of dictionaries containing the actual terms and polarities under 'aspects'.
predictions (List[Dict]): A list of dictionaries containing predicted aspect categories to terms and their sentiments.
Returns:
Tuple[List[str], List[str], List[str], List[str]]: A tuple containing lists of true aspect terms,
adjusted predicted aspect terms, true polarities, and adjusted predicted polarities.
"""
# Extract aspect terms and polarities
truth_aspect_terms = extract_aspects(references, subtask_key, subtask_value)
pred_aspect_terms = extract_aspects(predictions, subtask_key, subtask_value)
truth_polarities = extract_aspects(references, subtask_key, "polarity")
pred_polarities = extract_aspects(predictions, subtask_key, "polarity")
# Define adjustment parameters
special_token = "NONE" # For missing aspect terms
sentiment_choices = [
"positive",
"negative",
"neutral",
"conflict",
] # For missing polarities
# Adjust the predictions to match the length of references
adjusted_pred_terms = adjust_predictions(
truth_aspect_terms, pred_aspect_terms, [special_token]
)
adjusted_pred_polarities = adjust_predictions(
truth_polarities, pred_polarities, sentiment_choices
)
return (
flatten_list(truth_aspect_terms),
flatten_list(adjusted_pred_terms),
flatten_list(truth_polarities),
flatten_list(adjusted_pred_polarities),
)
def flatten_list(nested_list):
"""Flatten a nested list into a single-level list."""
return list(chain.from_iterable(nested_list))
def extract_pred_terms(
all_predictions: List[Dict[str, Dict[str, str]]]
) -> List[List]:
"""Extract and organize predicted terms from the sentiment analysis results."""
pred_aspect_terms = []
for pred in all_predictions:
terms = [term for cat in pred.values() for term in cat.keys()]
pred_aspect_terms.append(terms)
return pred_aspect_terms
def merge_aspects_and_categories(aspects, categories):
result = []
# Assuming both lists are of the same length and corresponding indices match
for aspect, category in zip(aspects, categories):
combined_entry = {
"aspects": {"term": [], "polarity": []},
"category": {"category": [], "polarity": []},
}
# Process aspect entries
for cat_key, terms_dict in aspect.items():
for term, polarity in terms_dict.items():
combined_entry["aspects"]["term"].append(term)
combined_entry["aspects"]["polarity"].append(polarity)
# Add category details based on the aspect's key if available in categories
if cat_key in category:
combined_entry["category"]["category"].append(cat_key)
combined_entry["category"]["polarity"].append(
category[cat_key]
)
# Ensure all keys in category are accounted for
for cat_key, polarity in category.items():
if cat_key not in combined_entry["category"]["category"]:
combined_entry["category"]["category"].append(cat_key)
combined_entry["category"]["polarity"].append(polarity)
result.append(combined_entry)
return result