generation_evaluator / gradio_tst.py
jogonba2's picture
add examples
cb18316
raw
history blame
4.72 kB
import json
import logging
import os
import re
import sys
from pathlib import Path
import numpy as np
from datasets import Value
REGEX_YAML_BLOCK = re.compile(r"---[\n\r]+([\S\s]*?)[\n\r]+---[\n\r]")
def infer_gradio_input_types(feature_types):
"""
Maps metric feature types to input types for gradio Dataframes:
- float/int -> numbers
- string -> strings
- any other -> json
Note that json is not a native gradio type but will be treated as string that
is then parsed as a json.
"""
input_types = []
for feature_type in feature_types:
input_type = "json"
if isinstance(feature_type, Value):
if feature_type.dtype.startswith(
"int"
) or feature_type.dtype.startswith("float"):
input_type = "number"
elif feature_type.dtype == "string":
input_type = "str"
input_types.append(input_type)
return input_types
def json_to_string_type(input_types):
"""Maps json input type to str."""
return ["str" if i == "json" else i for i in input_types]
def parse_readme(filepath):
"""Parses a repositories README and removes"""
if not os.path.exists(filepath):
return "No README.md found."
with open(filepath, "r") as f:
text = f.read()
match = REGEX_YAML_BLOCK.search(text)
if match:
text = text[match.end() :]
return text
def parse_gradio_data(data, input_types):
"""Parses data from gradio Dataframe for use in metric."""
metric_inputs = {}
data.replace("", np.nan, inplace=True)
data.dropna(inplace=True)
for feature_name, input_type in zip(data, input_types):
if input_type == "json":
metric_inputs[feature_name] = [
json.loads(d) for d in data[feature_name].to_list()
]
elif input_type == "str":
metric_inputs[feature_name] = [
d.strip('"') for d in data[feature_name].to_list()
]
else:
metric_inputs[feature_name] = data[feature_name]
return metric_inputs
def parse_test_cases(test_cases, feature_names, input_types):
"""
Parses test cases to be used in gradio Dataframe. Note that an apostrophe is added
to strings to follow the format in json.
"""
if len(test_cases) == 0:
return None
examples = []
for test_case in test_cases:
parsed_cases = []
for feat, input_type in zip(feature_names, input_types):
if input_type == "json":
parsed_cases.append(
[str(element) for element in test_case[feat]]
)
elif input_type == "str":
parsed_cases.append(
['"' + element + '"' for element in test_case[feat]]
)
else:
parsed_cases.append(test_case[feat])
examples.append([list(i) for i in zip(*parsed_cases)])
return examples
def launch_gradio_widget2(metric):
"""Launches `metric` widget with Gradio."""
try:
import gradio as gr
except ImportError as error:
logging.error(
"To create a metric widget with Gradio make sure gradio is installed."
)
raise error
local_path = Path(sys.path[0])
# if there are several input types, use first as default.
if isinstance(metric.features, list):
(feature_names, feature_types) = zip(*metric.features[0].items())
else:
(feature_names, feature_types) = zip(*metric.features.items())
gradio_input_types = infer_gradio_input_types(feature_types)
def compute(data):
return metric.compute(**parse_gradio_data(data, gradio_input_types))
test_cases = [
{
"predictions": [
"You are so good",
"Madrid is the capital of Spain",
],
"references": ["You are so bad", "Paris is the capital of France"],
}
]
iface = gr.Interface(
fn=compute,
inputs=gr.Dataframe(
headers=feature_names,
col_count=len(feature_names),
row_count=1,
datatype=json_to_string_type(gradio_input_types),
),
outputs=gr.Textbox(label=metric.name),
description=(
metric.info.description
+ "\nThis is a text-based metric, so make sure to wrap you input in double quotes."
),
title=f"Metric: {metric.name}",
article=parse_readme(local_path / "README.md"),
examples=[
parse_test_cases(test_cases, feature_names, gradio_input_types)
],
)
iface.launch(share=True)