symlink commited on
Commit
9a5897c
1 Parent(s): 1a9120a

llava-next

Browse files
Files changed (3) hide show
  1. 3.py +0 -5
  2. app.old +146 -0
  3. app.py +4 -145
3.py DELETED
@@ -1,5 +0,0 @@
1
- # Load model directly
2
- from transformers import AutoProcessor, AutoModelForCausalLM
3
-
4
- processor = AutoProcessor.from_pretrained("lmms-lab/LLaVA-NeXT-Video-32B-Qwen")
5
- model = AutoModelForCausalLM.from_pretrained("lmms-lab/LLaVA-NeXT-Video-32B-Qwen")
 
 
 
 
 
 
app.old ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import random
4
+ from diffusers import DiffusionPipeline
5
+ import torch
6
+
7
+ device = "cuda" if torch.cuda.is_available() else "cpu"
8
+
9
+ if torch.cuda.is_available():
10
+ torch.cuda.max_memory_allocated(device=device)
11
+ pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
+ pipe.enable_xformers_memory_efficient_attention()
13
+ pipe = pipe.to(device)
14
+ else:
15
+ pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
+ pipe = pipe.to(device)
17
+
18
+ MAX_SEED = np.iinfo(np.int32).max
19
+ MAX_IMAGE_SIZE = 1024
20
+
21
+ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
22
+
23
+ if randomize_seed:
24
+ seed = random.randint(0, MAX_SEED)
25
+
26
+ generator = torch.Generator().manual_seed(seed)
27
+
28
+ image = pipe(
29
+ prompt = prompt,
30
+ negative_prompt = negative_prompt,
31
+ guidance_scale = guidance_scale,
32
+ num_inference_steps = num_inference_steps,
33
+ width = width,
34
+ height = height,
35
+ generator = generator
36
+ ).images[0]
37
+
38
+ return image
39
+
40
+ examples = [
41
+ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
+ "A dog named Kendrick riding a green horse",
43
+ "A delicious ceviche cheesecake slice",
44
+ ]
45
+
46
+ css="""
47
+ #col-container {
48
+ margin: 0 auto;
49
+ max-width: 520px;
50
+ }
51
+ """
52
+
53
+ if torch.cuda.is_available():
54
+ power_device = "GPU"
55
+ else:
56
+ power_device = "CPU"
57
+
58
+ with gr.Blocks(css=css) as demo:
59
+
60
+ with gr.Column(elem_id="col-container"):
61
+ gr.Markdown(f"""
62
+ # Text-to-Image Gradio Template
63
+ Currently running on {power_device}.
64
+ """)
65
+
66
+ with gr.Row():
67
+
68
+ prompt = gr.Text(
69
+ label="Prompt",
70
+ show_label=False,
71
+ max_lines=1,
72
+ placeholder="Enter your prompt",
73
+ container=False,
74
+ )
75
+
76
+ run_button = gr.Button("Run", scale=0)
77
+
78
+ result = gr.Image(label="Result", show_label=False)
79
+
80
+ with gr.Accordion("Advanced Settings", open=False):
81
+
82
+ negative_prompt = gr.Text(
83
+ label="Negative prompt",
84
+ max_lines=1,
85
+ placeholder="Enter a negative prompt",
86
+ visible=False,
87
+ )
88
+
89
+ seed = gr.Slider(
90
+ label="Seed",
91
+ minimum=0,
92
+ maximum=MAX_SEED,
93
+ step=1,
94
+ value=0,
95
+ )
96
+
97
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
+
99
+ with gr.Row():
100
+
101
+ width = gr.Slider(
102
+ label="Width",
103
+ minimum=256,
104
+ maximum=MAX_IMAGE_SIZE,
105
+ step=32,
106
+ value=512,
107
+ )
108
+
109
+ height = gr.Slider(
110
+ label="Height",
111
+ minimum=256,
112
+ maximum=MAX_IMAGE_SIZE,
113
+ step=32,
114
+ value=512,
115
+ )
116
+
117
+ with gr.Row():
118
+
119
+ guidance_scale = gr.Slider(
120
+ label="Guidance scale",
121
+ minimum=0.0,
122
+ maximum=10.0,
123
+ step=0.1,
124
+ value=0.0,
125
+ )
126
+
127
+ num_inference_steps = gr.Slider(
128
+ label="Number of inference steps",
129
+ minimum=1,
130
+ maximum=12,
131
+ step=1,
132
+ value=2,
133
+ )
134
+
135
+ gr.Examples(
136
+ examples = examples,
137
+ inputs = [prompt]
138
+ )
139
+
140
+ run_button.click(
141
+ fn = infer,
142
+ inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
+ outputs = [result]
144
+ )
145
+
146
+ demo.queue().launch()
app.py CHANGED
@@ -1,146 +1,5 @@
1
- import gradio as gr
2
- import numpy as np
3
- import random
4
- from diffusers import DiffusionPipeline
5
- import torch
6
 
7
- device = "cuda" if torch.cuda.is_available() else "cpu"
8
-
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- pipe = pipe.to(device)
17
-
18
- MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 1024
20
-
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
22
-
23
- if randomize_seed:
24
- seed = random.randint(0, MAX_SEED)
25
-
26
- generator = torch.Generator().manual_seed(seed)
27
-
28
- image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
36
- ).images[0]
37
-
38
- return image
39
-
40
- examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "A dog named Kendrick riding a green horse",
43
- "A delicious ceviche cheesecake slice",
44
- ]
45
-
46
- css="""
47
- #col-container {
48
- margin: 0 auto;
49
- max-width: 520px;
50
- }
51
- """
52
-
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
- else:
56
- power_device = "CPU"
57
-
58
- with gr.Blocks(css=css) as demo:
59
-
60
- with gr.Column(elem_id="col-container"):
61
- gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
64
- """)
65
-
66
- with gr.Row():
67
-
68
- prompt = gr.Text(
69
- label="Prompt",
70
- show_label=False,
71
- max_lines=1,
72
- placeholder="Enter your prompt",
73
- container=False,
74
- )
75
-
76
- run_button = gr.Button("Run", scale=0)
77
-
78
- result = gr.Image(label="Result", show_label=False)
79
-
80
- with gr.Accordion("Advanced Settings", open=False):
81
-
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
87
- )
88
-
89
- seed = gr.Slider(
90
- label="Seed",
91
- minimum=0,
92
- maximum=MAX_SEED,
93
- step=1,
94
- value=0,
95
- )
96
-
97
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
-
99
- with gr.Row():
100
-
101
- width = gr.Slider(
102
- label="Width",
103
- minimum=256,
104
- maximum=MAX_IMAGE_SIZE,
105
- step=32,
106
- value=512,
107
- )
108
-
109
- height = gr.Slider(
110
- label="Height",
111
- minimum=256,
112
- maximum=MAX_IMAGE_SIZE,
113
- step=32,
114
- value=512,
115
- )
116
-
117
- with gr.Row():
118
-
119
- guidance_scale = gr.Slider(
120
- label="Guidance scale",
121
- minimum=0.0,
122
- maximum=10.0,
123
- step=0.1,
124
- value=0.0,
125
- )
126
-
127
- num_inference_steps = gr.Slider(
128
- label="Number of inference steps",
129
- minimum=1,
130
- maximum=12,
131
- step=1,
132
- value=2,
133
- )
134
-
135
- gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
138
- )
139
-
140
- run_button.click(
141
- fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- outputs = [result]
144
- )
145
-
146
- demo.queue().launch()
 
1
+ # Load model directly
2
+ from transformers import AutoProcessor, AutoModelForCausalLM
 
 
 
3
 
4
+ processor = AutoProcessor.from_pretrained("lmms-lab/LLaVA-NeXT-Video-32B-Qwen")
5
+ model = AutoModelForCausalLM.from_pretrained("lmms-lab/LLaVA-NeXT-Video-32B-Qwen")