test
Browse files
app.2
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import av
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from transformers import LlavaNextVideoForConditionalGeneration, LlavaNextVideoProcessor
|
5 |
+
|
6 |
+
def read_video_pyav(container, indices):
|
7 |
+
'''
|
8 |
+
Decode the video with PyAV decoder.
|
9 |
+
Args:
|
10 |
+
container (`av.container.input.InputContainer`): PyAV container.
|
11 |
+
indices (`List[int]`): List of frame indices to decode.
|
12 |
+
Returns:
|
13 |
+
result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
|
14 |
+
'''
|
15 |
+
frames = []
|
16 |
+
container.seek(0)
|
17 |
+
start_index = indices[0]
|
18 |
+
end_index = indices[-1]
|
19 |
+
for i, frame in enumerate(container.decode(video=0)):
|
20 |
+
if i > end_index:
|
21 |
+
break
|
22 |
+
if i >= start_index and i in indices:
|
23 |
+
frames.append(frame)
|
24 |
+
return np.stack([x.to_ndarray(format="rgb24") for x in frames])
|
25 |
+
|
26 |
+
# Load the model in half-precision
|
27 |
+
model = LlavaNextVideoForConditionalGeneration.from_pretrained("llava-hf/LLaVA-NeXT-Video-7B-hf", torch_dtype=torch.float16, device_map="auto")
|
28 |
+
processor = LlavaNextVideoProcessor.from_pretrained("llava-hf/LLaVA-NeXT-Video-7B-hf")
|
29 |
+
|
30 |
+
# Load the video as an np.array, sampling uniformly 8 frames (can sample more for longer videos)
|
31 |
+
video_path = hf_hub_download(repo_id="raushan-testing-hf/videos-test", filename="sample_demo_1.mp4", repo_type="dataset")
|
32 |
+
container = av.open(video_path)
|
33 |
+
total_frames = container.streams.video[0].frames
|
34 |
+
indices = np.arange(0, total_frames, total_frames / 8).astype(int)
|
35 |
+
video = read_video_pyav(container, indices)
|
36 |
+
|
37 |
+
conversation = [
|
38 |
+
{
|
39 |
+
|
40 |
+
"role": "user",
|
41 |
+
"content": [
|
42 |
+
{"type": "text", "text": "Why is this video funny?"},
|
43 |
+
{"type": "video"},
|
44 |
+
],
|
45 |
+
},
|
46 |
+
]
|
47 |
+
|
48 |
+
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
49 |
+
inputs = processor(text=prompt, videos=video, return_tensors="pt")
|
50 |
+
|
51 |
+
out = model.generate(**inputs, max_new_tokens=60)
|
52 |
+
processor.batch_decode(out, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
app.py
CHANGED
@@ -1,52 +1,4 @@
|
|
1 |
-
|
2 |
-
import
|
3 |
-
import numpy as np
|
4 |
-
from transformers import LlavaNextVideoForConditionalGeneration, LlavaNextVideoProcessor
|
5 |
|
6 |
-
|
7 |
-
'''
|
8 |
-
Decode the video with PyAV decoder.
|
9 |
-
Args:
|
10 |
-
container (`av.container.input.InputContainer`): PyAV container.
|
11 |
-
indices (`List[int]`): List of frame indices to decode.
|
12 |
-
Returns:
|
13 |
-
result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
|
14 |
-
'''
|
15 |
-
frames = []
|
16 |
-
container.seek(0)
|
17 |
-
start_index = indices[0]
|
18 |
-
end_index = indices[-1]
|
19 |
-
for i, frame in enumerate(container.decode(video=0)):
|
20 |
-
if i > end_index:
|
21 |
-
break
|
22 |
-
if i >= start_index and i in indices:
|
23 |
-
frames.append(frame)
|
24 |
-
return np.stack([x.to_ndarray(format="rgb24") for x in frames])
|
25 |
-
|
26 |
-
# Load the model in half-precision
|
27 |
-
model = LlavaNextVideoForConditionalGeneration.from_pretrained("llava-hf/LLaVA-NeXT-Video-7B-hf", torch_dtype=torch.float16, device_map="auto")
|
28 |
-
processor = LlavaNextVideoProcessor.from_pretrained("llava-hf/LLaVA-NeXT-Video-7B-hf")
|
29 |
-
|
30 |
-
# Load the video as an np.array, sampling uniformly 8 frames (can sample more for longer videos)
|
31 |
-
video_path = hf_hub_download(repo_id="raushan-testing-hf/videos-test", filename="sample_demo_1.mp4", repo_type="dataset")
|
32 |
-
container = av.open(video_path)
|
33 |
-
total_frames = container.streams.video[0].frames
|
34 |
-
indices = np.arange(0, total_frames, total_frames / 8).astype(int)
|
35 |
-
video = read_video_pyav(container, indices)
|
36 |
-
|
37 |
-
conversation = [
|
38 |
-
{
|
39 |
-
|
40 |
-
"role": "user",
|
41 |
-
"content": [
|
42 |
-
{"type": "text", "text": "Why is this video funny?"},
|
43 |
-
{"type": "video"},
|
44 |
-
],
|
45 |
-
},
|
46 |
-
]
|
47 |
-
|
48 |
-
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
49 |
-
inputs = processor(text=prompt, videos=video, return_tensors="pt")
|
50 |
-
|
51 |
-
out = model.generate(**inputs, max_new_tokens=60)
|
52 |
-
processor.batch_decode(out, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
|
|
1 |
+
# Use a pipeline as a high-level helper
|
2 |
+
from transformers import pipeline
|
|
|
|
|
3 |
|
4 |
+
pipe = pipeline("text-generation", model="lmms-lab/LLaVA-NeXT-Video-7B-DPO")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|