File size: 6,236 Bytes
3f7ab5b
 
 
 
 
 
 
 
 
 
 
 
 
 
971b179
3f7ab5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd55b0f
3f7ab5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70c3134
3f7ab5b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
from pydantic import NoneStr
import os
from langchain.chains.question_answering import load_qa_chain
from langchain.document_loaders import UnstructuredFileLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.llms import OpenAI
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
import gradio as gr
import openai


class ChemicalIdentifier:
    def __init__(self):
        openai.api_key = os.getenv("OPENAI_API_KEY") 

    def get_empty_state(self):

        """ Create empty Knowledge base"""

        return {"knowledge_base": None}

    def create_knowledge_base(self,docs):

        """Create a knowledge base from the given documents.

        Args:
            docs (List[str]): List of documents.

        Returns:
            FAISS: Knowledge base built from the documents.
        """  

        # Initialize a CharacterTextSplitter to split the documents into chunks
        # Each chunk has a maximum length of 500 characters
        # There is no overlap between the chunks
        text_splitter = CharacterTextSplitter(
            separator="\n", chunk_size=500, chunk_overlap=0, length_function=len
        )

        # Split the documents into chunks using the text_splitter
        chunks = text_splitter.split_documents(docs)

        # Initialize an OpenAIEmbeddings model to compute embeddings of the chunks
        embeddings = OpenAIEmbeddings()

        # Build a knowledge base using FAISS from the chunks and their embeddings
        knowledge_base = FAISS.from_documents(chunks, embeddings)

        # Return the resulting knowledge base
        return knowledge_base


    def upload_file(self, file_obj):
        """Upload a file and create a knowledge base from its contents.

        Args:
            file_obj (file-like object): The file to upload.

        Returns:
            tuple: A tuple containing the file name and the knowledge base.
        """

        try:
            # Initialize an UnstructuredFileLoader to load the contents of the file
            # The loader uses a "fast" strategy for efficient loading
            loader = UnstructuredFileLoader(file_obj.name, strategy="fast")

            # Load the contents of the file using the loader
            docs = loader.load()

            # Create a knowledge base from the loaded documents using the create_knowledge_base() method
            knowledge_base = self.create_knowledge_base(docs)
        except:
            # If an error occurs during file loading return file name and an empty string
            return file_obj.name, ""

        # Return a tuple containing the file name and the knowledge base
        return file_obj.name, {"knowledge_base": knowledge_base}


    def answer_question(self, state):
        """Answer a question based on the current knowledge base.

        Args:
            state (dict): The current state containing the knowledge base.

        Returns:
            str: The answer to the question.
        """

        try:
            # Retrieve the knowledge base from the state dictionary
            knowledge_base = state["knowledge_base"]

            # Set the question for which we want to find the answer
            question = "Identify the chemical capabilities"

            # Perform a similarity search on the knowledge base to retrieve relevant documents
            docs = knowledge_base.similarity_search(question)

            # Initialize an OpenAI language model for question answering
            llm = OpenAI(temperature=0.4)

            # Load a question-answering chain using the language model
            chain = load_qa_chain(llm, chain_type="stuff")

            # Run the question-answering chain on the input documents and question
            response = chain.run(input_documents=docs, question=question)

            # Return the response as the answer to the question
            return response
        except:
            # If an error occurs, return a default error message
            return "Please upload Proper Document"


    def gradio_interface(self):

        """Create the Gradio interface for the Chemical Identifier."""    

        with gr.Blocks(css="style.css",theme=gr.themes.Soft()) as demo:
          state = gr.State(self.get_empty_state())
          gr.HTML("""<img class="leftimage" align="left" src="https://templates.images.credential.net/1612472097627370951721412474196.png" alt="Image" width="210" height="210">
          <img class="rightimage" align="right" src="https://logos-download.com/wp-content/uploads/2016/06/Syngenta_logo.png" alt="Image" width="150" height="140">""")
          with gr.Column(elem_id="col-container"):
              gr.HTML(
                  """<hr style="border-top: 5px solid white;">"""
                  )
              gr.HTML(
                  """<br>
                  <h1 style="text-align:center;">
                      Syngenta Chemical Identifier
                    </h1> """
              )
              gr.HTML(
                  """<hr style="border-top: 5px solid white;">"""
                  )

              gr.Markdown("**Upload your file**")
              with gr.Row(elem_id="row-flex"):
                  with gr.Column(scale=0.90, min_width=160):
                      file_output = gr.File(elem_classes="heightfit")          
                  with gr.Column(scale=0.10, min_width=160):
                      upload_button = gr.UploadButton(
                          "Browse File", file_types=[".txt", ".pdf", ".doc", ".docx"],
                          elem_classes="filenameshow")


              with gr.Row():
                with gr.Column(scale=1, min_width=0):
                  analyse_btn = gr.Button(value="Analyse")
              with gr.Row():
                with gr.Column(scale=1, min_width=0):
                  answer = gr.Textbox(value="",label='Answer Box :',show_label=True, placeholder="",lines=5)

          upload_button.upload(self.upload_file, upload_button, [file_output,state])

          analyse_btn.click(self.answer_question, [state], [answer])

        demo.queue().launch()

if __name__=="__main__":
    chemical = ChemicalIdentifier()
    chemical.gradio_interface()