Spaces:
Runtime error
Runtime error
from pydantic import NoneStr | |
import os | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.document_loaders import UnstructuredFileLoader | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.llms import OpenAI | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.vectorstores import FAISS | |
import gradio as gr | |
import openai | |
class ChemicalIdentifier: | |
def __init__(self): | |
opeai.api_key = os.getenv["OPENAI_API_KEY"] | |
def get_empty_state(self): | |
""" Create empty Knowledge base""" | |
return {"knowledge_base": None} | |
def create_knowledge_base(self,docs): | |
"""Create a knowledge base from the given documents. | |
Args: | |
docs (List[str]): List of documents. | |
Returns: | |
FAISS: Knowledge base built from the documents. | |
""" | |
# Initialize a CharacterTextSplitter to split the documents into chunks | |
# Each chunk has a maximum length of 500 characters | |
# There is no overlap between the chunks | |
text_splitter = CharacterTextSplitter( | |
separator="\n", chunk_size=500, chunk_overlap=0, length_function=len | |
) | |
# Split the documents into chunks using the text_splitter | |
chunks = text_splitter.split_documents(docs) | |
# Initialize an OpenAIEmbeddings model to compute embeddings of the chunks | |
embeddings = OpenAIEmbeddings() | |
# Build a knowledge base using FAISS from the chunks and their embeddings | |
knowledge_base = FAISS.from_documents(chunks, embeddings) | |
# Return the resulting knowledge base | |
return knowledge_base | |
def upload_file(self, file_obj): | |
"""Upload a file and create a knowledge base from its contents. | |
Args: | |
file_obj (file-like object): The file to upload. | |
Returns: | |
tuple: A tuple containing the file name and the knowledge base. | |
""" | |
try: | |
# Initialize an UnstructuredFileLoader to load the contents of the file | |
# The loader uses a "fast" strategy for efficient loading | |
loader = UnstructuredFileLoader(file_obj.name, strategy="fast") | |
# Load the contents of the file using the loader | |
docs = loader.load() | |
# Create a knowledge base from the loaded documents using the create_knowledge_base() method | |
knowledge_base = self.create_knowledge_base(docs) | |
except: | |
# If an error occurs during file loading return file name and an empty string | |
return file_obj.name, "" | |
# Return a tuple containing the file name and the knowledge base | |
return file_obj.name, {"knowledge_base": knowledge_base} | |
def answer_question(self, state): | |
"""Answer a question based on the current knowledge base. | |
Args: | |
state (dict): The current state containing the knowledge base. | |
Returns: | |
str: The answer to the question. | |
""" | |
try: | |
# Retrieve the knowledge base from the state dictionary | |
knowledge_base = state["knowledge_base"] | |
# Set the question for which we want to find the answer | |
question = "Identify the chemical capabilities" | |
# Perform a similarity search on the knowledge base to retrieve relevant documents | |
docs = knowledge_base.similarity_search(question) | |
# Initialize an OpenAI language model for question answering | |
llm = OpenAI(temperature=0.4) | |
# Load a question-answering chain using the language model | |
chain = load_qa_chain(llm, chain_type="stuff") | |
# Run the question-answering chain on the input documents and question | |
response = chain.run(input_documents=docs, question=question) | |
# Return the response as the answer to the question | |
return response | |
except: | |
# If an error occurs, return a default error message | |
return "Please upload Proper Document" | |
def gradio_interface(self): | |
"""Create the Gradio interface for the Chemical Identifier.""" | |
with gr.Blocks(css="style.css",theme=gr.themes.Soft()) as demo: | |
state = gr.State(self.get_empty_state()) | |
gr.HTML("""<img class="leftimage" align="left" src="https://templates.images.credential.net/1612472097627370951721412474196.png" alt="Image" width="210" height="210"> | |
<img class="rightimage" align="right" src="https://logos-download.com/wp-content/uploads/2016/06/Syngenta_logo.png" alt="Image" width="150" height="140">""") | |
with gr.Column(elem_id="col-container"): | |
gr.HTML( | |
"""<hr style="border-top: 5px solid white;">""" | |
) | |
gr.HTML( | |
"""<br> | |
<h1 style="text-align:center;"> | |
Syngenta Chemical Identifier | |
</h1> """ | |
) | |
gr.HTML( | |
"""<hr style="border-top: 5px solid white;">""" | |
) | |
gr.Markdown("**Upload your file**") | |
with gr.Row(elem_id="row-flex"): | |
with gr.Column(scale=0.90, min_width=160): | |
file_output = gr.File(elem_classes="filenameshow") | |
with gr.Column(scale=0.10, min_width=160): | |
upload_button = gr.UploadButton( | |
"Browse File", file_types=[".txt", ".pdf", ".doc", ".docx"], | |
elem_classes="filenameshow") | |
with gr.Row(): | |
with gr.Column(scale=1, min_width=0): | |
analyse_btn = gr.Button(value="Analyse") | |
with gr.Row(): | |
with gr.Column(scale=1, min_width=0): | |
answer = gr.Textbox(value="",label='Answer Box :',show_label=True, placeholder="",lines=5) | |
upload_button.upload(self.upload_file, upload_button, [file_output,state]) | |
analyse_btn.click(self.answer_question, [state], [answer]) | |
demo.queue().launch() | |
if __name__=="__main__": | |
chemical = ChemicalIdentifier() | |
chemical.gradio_interface() | |