Spaces:
Runtime error
Runtime error
martin-gorner
commited on
Commit
•
2ca0c5e
1
Parent(s):
d96a4ed
initial commit
Browse files- .gitignore +3 -0
- app.py +209 -52
- chatstate.py +94 -0
- img/bot.png +0 -0
- img/gemma.png +0 -0
- img/keras_logo_k.png +0 -0
- img/llama.png +0 -0
- img/mistral.png +0 -0
- img/usr.png +0 -0
- img/vicuna.png +0 -0
- models.py +105 -0
- requirements.txt +6 -1
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
.DS_Store
|
2 |
+
.vscode
|
3 |
+
__pycache__
|
app.py
CHANGED
@@ -1,63 +1,220 @@
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
|
|
|
|
8 |
|
|
|
|
|
|
|
9 |
|
10 |
-
|
|
|
11 |
message,
|
12 |
-
|
|
|
|
|
|
|
13 |
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
):
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
""
|
44 |
-
|
45 |
-
""
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
),
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
|
63 |
if __name__ == "__main__":
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
os.environ["KERAS_BACKEND"] = "jax"
|
4 |
+
|
5 |
import gradio as gr
|
6 |
+
from gradio import ChatMessage
|
7 |
+
import keras_hub
|
8 |
+
|
9 |
+
from chatstate import ChatState
|
10 |
+
from models import (
|
11 |
+
model_presets,
|
12 |
+
load_model,
|
13 |
+
model_labels,
|
14 |
+
preset_to_website_url,
|
15 |
+
get_appropriate_chat_template,
|
16 |
+
)
|
17 |
+
|
18 |
+
model_labels_list = list(model_labels)
|
19 |
+
|
20 |
+
# lod a warm up (compile) all the models
|
21 |
+
models = []
|
22 |
+
for preset in model_presets:
|
23 |
+
model = load_model(preset)
|
24 |
+
chat_template = get_appropriate_chat_template(preset)
|
25 |
+
chat_state = ChatState(model, "", chat_template)
|
26 |
+
prompt, response = chat_state.send_message("Hello")
|
27 |
+
print("model " + preset + "loaded and initialized.")
|
28 |
+
print("The model responded: " + response)
|
29 |
+
|
30 |
+
models = [load_model(preset) for preset in model_presets]
|
31 |
+
# model = keras_hub.models.Llama3CausalLM.from_preset(
|
32 |
+
# "hf://meta-llama/Llama-3.2-1B-Instruct", dtype="bfloat16"
|
33 |
+
# )
|
34 |
+
# models = [model, model]
|
35 |
+
|
36 |
+
|
37 |
+
def chat_turn_assistant_1(
|
38 |
+
model,
|
39 |
+
message,
|
40 |
+
history,
|
41 |
+
system_message,
|
42 |
+
preset,
|
43 |
+
# max_tokens,
|
44 |
+
# temperature,
|
45 |
+
# top_p,
|
46 |
+
):
|
47 |
+
chat_template = get_appropriate_chat_template(preset)
|
48 |
+
chat_state = ChatState(model, system_message, chat_template)
|
49 |
|
50 |
+
for msg in history:
|
51 |
+
msg = ChatMessage(**msg)
|
52 |
+
if msg.role == "user":
|
53 |
+
chat_state.add_to_history_as_user(msg.content)
|
54 |
+
elif msg.role == "assistant":
|
55 |
+
chat_state.add_to_history_as_model(msg.content)
|
56 |
|
57 |
+
prompt, response = chat_state.send_message(message)
|
58 |
+
history.append(ChatMessage(role="assistant", content=response))
|
59 |
+
return history
|
60 |
|
61 |
+
|
62 |
+
def chat_turn_assistant(
|
63 |
message,
|
64 |
+
sel1,
|
65 |
+
history1,
|
66 |
+
sel2,
|
67 |
+
history2,
|
68 |
system_message,
|
69 |
+
# max_tokens,
|
70 |
+
# temperature,
|
71 |
+
# top_p,
|
72 |
):
|
73 |
+
history1 = chat_turn_assistant_1(
|
74 |
+
models[sel1], message, history1, system_message, model_presets[sel1]
|
75 |
+
)
|
76 |
+
history2 = chat_turn_assistant_1(
|
77 |
+
models[sel2], message, history2, system_message, model_presets[sel2]
|
78 |
+
)
|
79 |
+
return "", history1, history2
|
80 |
+
|
81 |
+
|
82 |
+
def chat_turn_user_1(message, history):
|
83 |
+
history.append(ChatMessage(role="user", content=message))
|
84 |
+
return history
|
85 |
+
|
86 |
+
|
87 |
+
def chat_turn_user(message, history1, history2):
|
88 |
+
history1 = chat_turn_user_1(message, history1)
|
89 |
+
history2 = chat_turn_user_1(message, history2)
|
90 |
+
return "", history1, history2
|
91 |
+
|
92 |
+
|
93 |
+
def bot_icon_select(model_name):
|
94 |
+
if "gemma" in model_name:
|
95 |
+
return "img/gemma.png"
|
96 |
+
elif "llama" in model_name:
|
97 |
+
return "img/llama.png"
|
98 |
+
elif "vicuna" in model_name:
|
99 |
+
return "img/vicuna.png"
|
100 |
+
elif "mistral" in model_name:
|
101 |
+
return "img/mistral.png"
|
102 |
+
# default
|
103 |
+
return "img/bot.png"
|
104 |
+
|
105 |
+
|
106 |
+
def instantiate_chatbots(sel1, sel2):
|
107 |
+
model_name1 = model_presets[sel1]
|
108 |
+
chatbot1 = gr.Chatbot(
|
109 |
+
type="messages",
|
110 |
+
show_label=False,
|
111 |
+
avatar_images=("img/usr.png", bot_icon_select(model_name1)),
|
112 |
+
)
|
113 |
+
model_name2 = model_presets[sel2]
|
114 |
+
chatbot2 = gr.Chatbot(
|
115 |
+
type="messages",
|
116 |
+
show_label=False,
|
117 |
+
avatar_images=("img/usr.png", bot_icon_select(model_name2)),
|
118 |
+
)
|
119 |
+
return chatbot1, chatbot2
|
120 |
+
|
121 |
+
|
122 |
+
def instantiate_select_boxes(sel1, sel2, model_labels):
|
123 |
+
sel1 = gr.Dropdown(
|
124 |
+
choices=[(name, i) for i, name in enumerate(model_labels)],
|
125 |
+
show_label=False,
|
126 |
+
info="<span style='color:black'>Selected model 1:</span> "
|
127 |
+
+ "<a href='"
|
128 |
+
+ preset_to_website_url(model_presets[sel1])
|
129 |
+
+ "'>"
|
130 |
+
+ preset_to_website_url(model_presets[sel1])
|
131 |
+
+ "</a>",
|
132 |
+
value=sel1,
|
133 |
+
)
|
134 |
+
sel2 = gr.Dropdown(
|
135 |
+
choices=[(name, i) for i, name in enumerate(model_labels)],
|
136 |
+
show_label=False,
|
137 |
+
info="<span style='color:black'>Selected model 2:</span> "
|
138 |
+
+ "<a href='"
|
139 |
+
+ preset_to_website_url(model_presets[sel2])
|
140 |
+
+ "'>"
|
141 |
+
+ preset_to_website_url(model_presets[sel2])
|
142 |
+
+ "</a>",
|
143 |
+
value=sel2,
|
144 |
+
)
|
145 |
+
return sel1, sel2
|
146 |
+
|
147 |
+
|
148 |
+
def instantiate_chatbots_and_select_boxes(sel1, sel2, model_labels):
|
149 |
+
chatbot1, chatbot2 = instantiate_chatbots(sel1, sel2)
|
150 |
+
sel1, sel2 = instantiate_select_boxes(sel1, sel2, model_labels)
|
151 |
+
return sel1, chatbot1, sel2, chatbot2
|
152 |
+
|
153 |
+
|
154 |
+
with gr.Blocks(fill_width=True, title="Keras demo") as demo:
|
155 |
+
|
156 |
+
with gr.Row():
|
157 |
+
gr.Image(
|
158 |
+
"img/keras_logo_k.png",
|
159 |
+
width=80,
|
160 |
+
height=80,
|
161 |
+
min_width=80,
|
162 |
+
show_label=False,
|
163 |
+
show_download_button=False,
|
164 |
+
show_fullscreen_button=False,
|
165 |
+
interactive=False,
|
166 |
+
scale=0.01,
|
167 |
+
container=False,
|
168 |
+
)
|
169 |
+
gr.HTML(
|
170 |
+
"<H2> Battle of the Keras chatbots on TPU</H2>"
|
171 |
+
+ "All the models are loaded into the TPU memory. "
|
172 |
+
+ "You can call them at will and compare their answers. <br/>"
|
173 |
+
+ "The entire chat history is fed to the models at every submission."
|
174 |
+
+ "This demno is runnig on a Google TPU v5e 2x4 (8 cores).",
|
175 |
+
)
|
176 |
+
with gr.Row():
|
177 |
+
sel1, sel2 = instantiate_select_boxes(0, 1, model_labels_list)
|
178 |
+
|
179 |
+
with gr.Row():
|
180 |
+
chatbot1, chatbot2 = instantiate_chatbots(sel1.value, sel2.value)
|
181 |
+
|
182 |
+
msg = gr.Textbox(
|
183 |
+
label="Your message:",
|
184 |
+
)
|
185 |
+
with gr.Row():
|
186 |
+
gr.ClearButton([msg, chatbot1, chatbot2])
|
187 |
+
with gr.Accordion("Additional settings", open=False):
|
188 |
+
system_message = gr.Textbox(
|
189 |
+
label="Sytem prompt",
|
190 |
+
value="You are a helpful assistant and your name is Eliza.",
|
191 |
+
)
|
192 |
+
|
193 |
+
sel1.select(
|
194 |
+
lambda sel1, sel2: instantiate_chatbots_and_select_boxes(
|
195 |
+
sel1, sel2, model_labels_list
|
196 |
),
|
197 |
+
inputs=[sel1, sel2],
|
198 |
+
outputs=[sel1, chatbot1, sel2, chatbot2],
|
199 |
+
)
|
200 |
+
|
201 |
+
sel2.select(
|
202 |
+
lambda sel1, sel2: instantiate_chatbots_and_select_boxes(
|
203 |
+
sel1, sel2, model_labels_list
|
204 |
+
),
|
205 |
+
inputs=[sel1, sel2],
|
206 |
+
outputs=[sel1, chatbot1, sel2, chatbot2],
|
207 |
+
)
|
208 |
+
|
209 |
+
msg.submit(
|
210 |
+
chat_turn_user,
|
211 |
+
inputs=[msg, chatbot1, chatbot2],
|
212 |
+
outputs=[msg, chatbot1, chatbot2],
|
213 |
+
).then(
|
214 |
+
chat_turn_assistant,
|
215 |
+
[msg, sel1, chatbot1, sel2, chatbot2, system_message],
|
216 |
+
outputs=[msg, chatbot1, chatbot2],
|
217 |
+
)
|
218 |
|
219 |
|
220 |
if __name__ == "__main__":
|
chatstate.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# chat helper
|
2 |
+
class ChatState:
|
3 |
+
|
4 |
+
def __init__(self, model, system="", chat_template="auto"):
|
5 |
+
chat_template = (
|
6 |
+
type(model).__name__ if chat_template == "auto" else chat_template
|
7 |
+
)
|
8 |
+
|
9 |
+
if chat_template == "Llama3CausalLM":
|
10 |
+
self.__START_TURN_SYSTEM__ = (
|
11 |
+
"<|start_header_id|>system<|end_header_id|>\n\n"
|
12 |
+
)
|
13 |
+
self.__START_TURN_USER__ = (
|
14 |
+
"<|start_header_id|>user<|end_header_id|>\n\n"
|
15 |
+
)
|
16 |
+
self.__START_TURN_MODEL__ = (
|
17 |
+
"<|start_header_id|>assistant<|end_header_id|>\n\n"
|
18 |
+
)
|
19 |
+
self.__END_TURN_SYSTEM__ = "<|eot_id|>"
|
20 |
+
self.__END_TURN_USER__ = "<|eot_id|>"
|
21 |
+
self.__END_TURN_MODEL__ = "<|eot_id|>"
|
22 |
+
print("Using chat template for: Llama")
|
23 |
+
elif chat_template == "GemmaCausalLM":
|
24 |
+
self.__START_TURN_SYSTEM__ = ""
|
25 |
+
self.__START_TURN_USER__ = "<start_of_turn>user\n"
|
26 |
+
self.__START_TURN_MODEL__ = "<start_of_turn>model\n"
|
27 |
+
self.__END_TURN_SYSTEM__ = "\n"
|
28 |
+
self.__END_TURN_USER__ = "<end_of_turn>\n"
|
29 |
+
self.__END_TURN_MODEL__ = "<end_of_turn>\n"
|
30 |
+
print("Using chat template for: Gemma")
|
31 |
+
elif chat_template == "MistralCausalLM":
|
32 |
+
self.__START_TURN_SYSTEM__ = ""
|
33 |
+
self.__START_TURN_USER__ = "[INST]"
|
34 |
+
self.__START_TURN_MODEL__ = ""
|
35 |
+
self.__END_TURN_SYSTEM__ = "<s>"
|
36 |
+
self.__END_TURN_USER__ = "[/INST]"
|
37 |
+
self.__END_TURN_MODEL__ = "</s>"
|
38 |
+
print("Using chat template for: Mistral")
|
39 |
+
elif chat_template == "Vicuna":
|
40 |
+
self.__START_TURN_SYSTEM__ = ""
|
41 |
+
self.__START_TURN_USER__ = "USER: "
|
42 |
+
self.__START_TURN_MODEL__ = "ASSISTANT: "
|
43 |
+
self.__END_TURN_SYSTEM__ = "\n\n"
|
44 |
+
self.__END_TURN_USER__ = "\n"
|
45 |
+
self.__END_TURN_MODEL__ = "</s>\n"
|
46 |
+
print("Using chat template for : Vicuna")
|
47 |
+
else:
|
48 |
+
assert (0, "Unknown turn tags for this model class")
|
49 |
+
|
50 |
+
self.model = model
|
51 |
+
self.system = system
|
52 |
+
self.history = []
|
53 |
+
|
54 |
+
def add_to_history_as_user(self, message):
|
55 |
+
self.history.append(
|
56 |
+
self.__START_TURN_USER__ + message + self.__END_TURN_USER__
|
57 |
+
)
|
58 |
+
|
59 |
+
def add_to_history_as_model(self, message):
|
60 |
+
self.history.append(
|
61 |
+
self.__START_TURN_MODEL__ + message + self.__END_TURN_MODEL__
|
62 |
+
)
|
63 |
+
|
64 |
+
def get_history(self):
|
65 |
+
return "".join([*self.history])
|
66 |
+
|
67 |
+
def get_full_prompt(self):
|
68 |
+
prompt = self.get_history() + self.__START_TURN_MODEL__
|
69 |
+
if len(self.system) > 0:
|
70 |
+
prompt = (
|
71 |
+
self.__START_TURN_SYSTEM__
|
72 |
+
+ self.system
|
73 |
+
+ self.__END_TURN_SYSTEM__
|
74 |
+
+ prompt
|
75 |
+
)
|
76 |
+
return prompt
|
77 |
+
|
78 |
+
def send_message(self, message):
|
79 |
+
"""
|
80 |
+
Handles sending a user message and getting a model response.
|
81 |
+
|
82 |
+
Args:
|
83 |
+
message: The user's message.
|
84 |
+
|
85 |
+
Returns:
|
86 |
+
The model's response.
|
87 |
+
"""
|
88 |
+
self.add_to_history_as_user(message)
|
89 |
+
prompt = self.get_full_prompt()
|
90 |
+
response = self.model.generate(
|
91 |
+
prompt, max_length=1024, strip_prompt=True
|
92 |
+
)
|
93 |
+
self.add_to_history_as_model(response)
|
94 |
+
return (message, response)
|
img/bot.png
ADDED
img/gemma.png
ADDED
img/keras_logo_k.png
ADDED
img/llama.png
ADDED
img/mistral.png
ADDED
img/usr.png
ADDED
img/vicuna.png
ADDED
models.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import keras
|
2 |
+
import keras_hub
|
3 |
+
|
4 |
+
model_presets = [
|
5 |
+
"hf://google/gemma-2-instruct-9b-keras",
|
6 |
+
"hf://meta-llama/Llama-3.1-8B-Instruct",
|
7 |
+
"hf://google/codegemma-7b-it-keras",
|
8 |
+
"hf://keras/mistral_instruct_7b_en",
|
9 |
+
"hf://keras/vicuna_1.5_7b_en",
|
10 |
+
]
|
11 |
+
|
12 |
+
model_labels = map(lambda s: s.removeprefix("hf://"), model_presets)
|
13 |
+
model_labels = map(lambda s: s.removeprefix("google/"), model_labels)
|
14 |
+
model_labels = map(lambda s: s.removeprefix("keras/"), model_labels)
|
15 |
+
model_labels = map(lambda s: s.removeprefix("meta-llama/"), model_labels)
|
16 |
+
|
17 |
+
|
18 |
+
def preset_to_website_url(preset):
|
19 |
+
preset = preset.removeprefix("hf://")
|
20 |
+
url = "http://huggingface.co/" + preset
|
21 |
+
return url
|
22 |
+
|
23 |
+
|
24 |
+
def get_appropriate_chat_template(preset):
|
25 |
+
return "Vicuna" if "vicuna" in preset else "auto"
|
26 |
+
|
27 |
+
|
28 |
+
def get_default_layout_map(preset_name, device_mesh):
|
29 |
+
# Llama's default layout map works for mistral and vicuna
|
30 |
+
# because their transformer layers have the same names.
|
31 |
+
if (
|
32 |
+
"Llama" in preset_name
|
33 |
+
or "mistral" in preset_name
|
34 |
+
or "vicuna" in preset_name
|
35 |
+
):
|
36 |
+
return keras_hub.models.Llama3Backbone.get_layout_map(device_mesh)
|
37 |
+
elif "gemma" in preset_name:
|
38 |
+
return keras_hub.models.GemmaBackbone.get_layout_map(device_mesh)
|
39 |
+
|
40 |
+
|
41 |
+
def log_applied_layout_map(model):
|
42 |
+
if "Gemma" in type(model):
|
43 |
+
transformer_decoder_block_name = "decoder_block_1"
|
44 |
+
elif "Llama3" in type(model) or "Mistral" in type(model):
|
45 |
+
transformer_decoder_block_name = "transformer_layer_1"
|
46 |
+
else:
|
47 |
+
assert (0, "Model type not recognized. Cannot display model layout.")
|
48 |
+
# See how layer sharding was applied
|
49 |
+
embedding_layer = model.backbone.get_layer("token_embedding")
|
50 |
+
print(embedding_layer)
|
51 |
+
decoder_block = model.backbone.get_layer(transformer_decoder_block_name)
|
52 |
+
print(type(decoder_block))
|
53 |
+
for variable in embedding_layer.weights + decoder_block.weights:
|
54 |
+
print(
|
55 |
+
f"{variable.path:<58} \
|
56 |
+
{str(variable.shape):<16} \
|
57 |
+
{str(variable.value.sharding.spec):<35} \
|
58 |
+
{str(variable.dtype)}"
|
59 |
+
)
|
60 |
+
|
61 |
+
|
62 |
+
def load_model(preset):
|
63 |
+
devices = keras.distribution.list_devices()
|
64 |
+
device_mesh = keras.distribution.DeviceMesh(
|
65 |
+
shape=(1, len(devices)), axis_names=["batch", "model"], devices=devices
|
66 |
+
)
|
67 |
+
model_parallel = keras.distribution.ModelParallel(
|
68 |
+
layout_map=get_default_layout_map(preset, device_mesh),
|
69 |
+
batch_dim_name="batch",
|
70 |
+
)
|
71 |
+
|
72 |
+
with model_parallel.scope():
|
73 |
+
# These two buggy models need this workaround to be loaded in bfloat16
|
74 |
+
if "google/gemma-2-instruct-9b-keras" in preset:
|
75 |
+
model = keras_hub.models.GemmaCausalLM(
|
76 |
+
backbone=keras_hub.models.GemmaBackbone.from_preset(
|
77 |
+
preset, dtype="bfloat16"
|
78 |
+
),
|
79 |
+
preprocessor=keras_hub.models.GemmaCausalLMPreprocessor.from_preset(
|
80 |
+
preset
|
81 |
+
),
|
82 |
+
)
|
83 |
+
elif "meta-llama/Llama-3.1-8B-Instruct" in preset:
|
84 |
+
model = keras_hub.models.Llama3CausalLM(
|
85 |
+
backbone=keras_hub.models.Llama3Backbone.from_preset(
|
86 |
+
preset, dtype="bfloat16"
|
87 |
+
),
|
88 |
+
preprocessor=keras_hub.models.Llama3CausalLMPreprocessor.from_preset(
|
89 |
+
preset
|
90 |
+
),
|
91 |
+
)
|
92 |
+
else:
|
93 |
+
model = keras_hub.models.CausalLM.from_preset(
|
94 |
+
preset, dtype="bfloat16"
|
95 |
+
)
|
96 |
+
|
97 |
+
log_applied_layout_map(model)
|
98 |
+
return model
|
99 |
+
|
100 |
+
|
101 |
+
# Some small models too
|
102 |
+
# model1 = keras_hub.models.CausalLM.from_preset("hf://meta-llama/Llama-3.2-1B-Instruct", dtype="bfloat16")
|
103 |
+
# model2 = keras_hub.models.CausalLM.from_preset("hf://google/gemma-2b-it-keras", dtype="bfloat16")
|
104 |
+
# model3 = keras_hub.models.CausalLM.from_preset("hf://meta-llama/Llama-3.2-3B-Instruct", dtype="bfloat16")
|
105 |
+
# keras/gemma_1.1_instruct_7b_en
|
requirements.txt
CHANGED
@@ -1 +1,6 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--find-links https://storage.googleapis.com/jax-releases/libtpu_releases.html
|
2 |
+
jax[tpu]
|
3 |
+
keras>=3
|
4 |
+
keras-hub
|
5 |
+
safetensors
|
6 |
+
huggingface_hub
|