Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -45,6 +45,22 @@ def convert_to_markdown(percentage_str):
|
|
45 |
markdown_str = " ".join([f"**{item.split(':')[0]}** {item.split(':')[1]}%" for item in items])
|
46 |
return markdown_str
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
# Load
|
50 |
df = pd.read_csv("evaluation_results.csv", encoding="utf-8")
|
@@ -52,7 +68,9 @@ df = pd.read_csv("evaluation_results.csv", encoding="utf-8")
|
|
52 |
df["rank_long"] = df["rank_long"].apply(lambda x: round(x, 2))
|
53 |
df["rank_multi"] = df["rank_multi"].apply(lambda x: round(x, 2))
|
54 |
df["rank_single"] = df["rank_single"].apply(lambda x: round(x, 2))
|
|
|
55 |
df["gender"] = df["gender"].apply(convert_to_markdown)
|
|
|
56 |
df["age"] = df["age"].apply(convert_to_markdown)
|
57 |
df["feature"] = df["feature"].apply(convert_to_markdown)
|
58 |
df["score"] = df["score"].apply(lambda x: round(x, 2))
|
@@ -216,8 +234,8 @@ params_infer_code = {
|
|
216 |
select_columns=["seed_id", "rank_long", "rank_multi", "rank_single", "score", "gender", "age",
|
217 |
"feature"],
|
218 |
search_columns=["gender", "age"],
|
219 |
-
filter_columns=["rank_long", "rank_multi", "rank_single", ],
|
220 |
-
hide_columns=["emb_data"],
|
221 |
)
|
222 |
stats = gr.State(value=[1])
|
223 |
download_button = gr.DownloadButton("Download .pt File", visible=True)
|
|
|
45 |
markdown_str = " ".join([f"**{item.split(':')[0]}** {item.split(':')[1]}%" for item in items])
|
46 |
return markdown_str
|
47 |
|
48 |
+
def convert_to_str(percentage_str):
|
49 |
+
"""
|
50 |
+
灏嗙櫨鍒嗘瘮瀛楃涓茶浆鎹负 str
|
51 |
+
:param percentage_str:
|
52 |
+
:return:
|
53 |
+
"""
|
54 |
+
if not percentage_str or not isinstance(percentage_str, str):
|
55 |
+
return "鏈煡"
|
56 |
+
items = percentage_str.split(";")
|
57 |
+
# sort by value
|
58 |
+
items.sort(key=lambda x: float(x.split(':')[1]), reverse=True)
|
59 |
+
keys = [item.split(':')[0] for item in items]
|
60 |
+
if keys and keys[0]:
|
61 |
+
return keys[0]
|
62 |
+
else:
|
63 |
+
return "鏈煡"
|
64 |
|
65 |
# Load
|
66 |
df = pd.read_csv("evaluation_results.csv", encoding="utf-8")
|
|
|
68 |
df["rank_long"] = df["rank_long"].apply(lambda x: round(x, 2))
|
69 |
df["rank_multi"] = df["rank_multi"].apply(lambda x: round(x, 2))
|
70 |
df["rank_single"] = df["rank_single"].apply(lambda x: round(x, 2))
|
71 |
+
df["gender_filter"] = df["gender"].apply(convert_to_str)
|
72 |
df["gender"] = df["gender"].apply(convert_to_markdown)
|
73 |
+
df["age_filter"] = df["age"].apply(convert_to_str)
|
74 |
df["age"] = df["age"].apply(convert_to_markdown)
|
75 |
df["feature"] = df["feature"].apply(convert_to_markdown)
|
76 |
df["score"] = df["score"].apply(lambda x: round(x, 2))
|
|
|
234 |
select_columns=["seed_id", "rank_long", "rank_multi", "rank_single", "score", "gender", "age",
|
235 |
"feature"],
|
236 |
search_columns=["gender", "age"],
|
237 |
+
filter_columns=["rank_long", "rank_multi", "rank_single", "gender_filter", "age_filter"],
|
238 |
+
hide_columns=["emb_data", "gender_filter", "age_filter"],
|
239 |
)
|
240 |
stats = gr.State(value=[1])
|
241 |
download_button = gr.DownloadButton("Download .pt File", visible=True)
|