Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,41 @@
|
|
1 |
import os
|
2 |
import tempfile
|
|
|
3 |
import streamlit as st
|
4 |
from dotenv import load_dotenv
|
5 |
-
from
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
load_dotenv()
|
12 |
|
13 |
def main():
|
14 |
st.sidebar.title("PDF Management")
|
15 |
uploaded_files = st.sidebar.file_uploader("Upload PDF files", type=["pdf"], accept_multiple_files=True)
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
21 |
files_info = save_uploaded_files(uploaded_files)
|
22 |
-
|
23 |
|
24 |
pages = {
|
25 |
"Lex Document Summarization": page_summarization,
|
26 |
-
"
|
|
|
27 |
}
|
28 |
|
29 |
st.sidebar.title("Page Navigation")
|
@@ -35,10 +47,10 @@ def main():
|
|
35 |
|
36 |
# Call the page function based on the user selection
|
37 |
if page:
|
38 |
-
pages[page](uploaded_files
|
39 |
|
40 |
def save_uploaded_files(uploaded_files):
|
41 |
-
"""Save uploaded files to temporary directory and return their file paths along with original filenames."""
|
42 |
files_info = []
|
43 |
for uploaded_file in uploaded_files:
|
44 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmpfile:
|
@@ -46,7 +58,7 @@ def save_uploaded_files(uploaded_files):
|
|
46 |
files_info.append((tmpfile.name, uploaded_file.name))
|
47 |
return files_info
|
48 |
|
49 |
-
def page_summarization(uploaded_files
|
50 |
"""Page for document summarization."""
|
51 |
st.title("Lex Document Summarization")
|
52 |
if uploaded_files:
|
@@ -56,42 +68,84 @@ def page_summarization(uploaded_files, model_name, use_ocr):
|
|
56 |
if summary_button or (original_name in st.session_state['summaries']):
|
57 |
with st.container():
|
58 |
st.write(f"Summary for {original_name}:")
|
59 |
-
if summary_button: # Only summarize if button is pressed
|
60 |
try:
|
61 |
-
|
62 |
-
|
63 |
-
else:
|
64 |
-
documents = load_and_split_documents(temp_path)
|
65 |
-
summary = summarize_documents(model_name, documents, os.getenv('OPENAI_API_KEY'))
|
66 |
st.session_state['summaries'][original_name] = summary # Store summary in session state
|
67 |
except Exception as e:
|
68 |
st.error(f"Failed to summarize {original_name}: {str(e)}")
|
69 |
st.text_area("", value=st.session_state['summaries'][original_name], height=200, key=f"summary_{original_name}")
|
70 |
|
71 |
-
def page_qna(uploaded_files
|
72 |
"""Page for Q&A functionality."""
|
73 |
-
st.title("
|
74 |
-
user_query = st.text_area("Enter your question here:",height=300)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
if st.button('Get Answer'):
|
76 |
if user_query:
|
77 |
-
answer =
|
78 |
st.write(answer)
|
79 |
else:
|
80 |
st.error("Please enter a question to get an answer.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
def
|
83 |
-
"""Function to embed documents."""
|
84 |
for temp_path, original_name in files_info:
|
85 |
if not is_document_embedded(original_name):
|
86 |
try:
|
87 |
-
|
88 |
-
documents = load_documents_OCR(temp_path, os.getenv('UNSTRUCTURED_API'))
|
89 |
-
else:
|
90 |
-
documents = load_documents(temp_path)
|
91 |
documents = update_metadata(documents, original_name)
|
92 |
documents = split_documents(documents)
|
93 |
if documents:
|
94 |
embed_documents_into_qdrant(documents, os.getenv('OPENAI_API_KEY'), os.getenv('QDRANT_URL'), os.getenv('QDRANT_API_KEY'), 'Lex-v1')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
st.success(f"Embedded {original_name}")
|
96 |
else:
|
97 |
st.error(f"No documents found or extracted from {original_name}")
|
@@ -100,13 +154,29 @@ def embed_documents(files_info, model_name, use_ocr):
|
|
100 |
else:
|
101 |
st.info(f"{original_name} is already embedded.")
|
102 |
|
103 |
-
def handle_query(query
|
104 |
"""Retrieve answers based on the query."""
|
105 |
try:
|
106 |
-
answer = retrieve_documents(query, os.getenv('OPENAI_API_KEY'), os.getenv('QDRANT_URL'), os.getenv('QDRANT_API_KEY')
|
107 |
return answer or "No relevant answer found."
|
108 |
except Exception as e:
|
109 |
return f"Error processing the query: {str(e)}"
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
if __name__ == "__main__":
|
112 |
main()
|
|
|
1 |
import os
|
2 |
import tempfile
|
3 |
+
import uuid
|
4 |
import streamlit as st
|
5 |
from dotenv import load_dotenv
|
6 |
+
from qdrant_client import models
|
7 |
+
from langchain_community.vectorstores import Qdrant
|
8 |
+
|
9 |
+
|
10 |
+
from utils import setup_openai_embeddings,setup_qdrant_client,delete_collection,is_document_embedded
|
11 |
+
from embed import embed_documents_into_qdrant
|
12 |
+
from preprocess import split_documents,update_metadata,load_documents_OCR
|
13 |
+
from retrieve import retrieve_documents,retrieve_documents_from_collection
|
14 |
+
from summarize import summarize_documents
|
15 |
+
|
16 |
|
17 |
load_dotenv()
|
18 |
|
19 |
def main():
|
20 |
st.sidebar.title("PDF Management")
|
21 |
uploaded_files = st.sidebar.file_uploader("Upload PDF files", type=["pdf"], accept_multiple_files=True)
|
22 |
+
|
23 |
+
if 'uploaded_collection_name' not in st.session_state:
|
24 |
+
st.session_state['uploaded_collection_name'] = None
|
25 |
+
|
26 |
+
if uploaded_files:
|
27 |
+
if st.sidebar.button("Add Docs to Data Bank"):
|
28 |
+
files_info = save_uploaded_files(uploaded_files)
|
29 |
+
embed_documents_to_data_bank(files_info)
|
30 |
+
|
31 |
+
if st.sidebar.button("Add Docs to Current Chat"):
|
32 |
files_info = save_uploaded_files(uploaded_files)
|
33 |
+
add_docs_to_current_chat(files_info)
|
34 |
|
35 |
pages = {
|
36 |
"Lex Document Summarization": page_summarization,
|
37 |
+
"Chat with Data Bank": page_qna,
|
38 |
+
"Chat with Uploaded Docs": page_chat_with_uploaded_docs
|
39 |
}
|
40 |
|
41 |
st.sidebar.title("Page Navigation")
|
|
|
47 |
|
48 |
# Call the page function based on the user selection
|
49 |
if page:
|
50 |
+
pages[page](uploaded_files)
|
51 |
|
52 |
def save_uploaded_files(uploaded_files):
|
53 |
+
"""Save uploaded files to a temporary directory and return their file paths along with original filenames."""
|
54 |
files_info = []
|
55 |
for uploaded_file in uploaded_files:
|
56 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmpfile:
|
|
|
58 |
files_info.append((tmpfile.name, uploaded_file.name))
|
59 |
return files_info
|
60 |
|
61 |
+
def page_summarization(uploaded_files):
|
62 |
"""Page for document summarization."""
|
63 |
st.title("Lex Document Summarization")
|
64 |
if uploaded_files:
|
|
|
68 |
if summary_button or (original_name in st.session_state['summaries']):
|
69 |
with st.container():
|
70 |
st.write(f"Summary for {original_name}:")
|
71 |
+
if summary_button: # Only summarize if the button is pressed
|
72 |
try:
|
73 |
+
documents = load_documents_OCR(temp_path, os.getenv('UNSTRUCTURED_API'))
|
74 |
+
summary = summarize_documents(documents, os.getenv('OPENAI_API_KEY'))
|
|
|
|
|
|
|
75 |
st.session_state['summaries'][original_name] = summary # Store summary in session state
|
76 |
except Exception as e:
|
77 |
st.error(f"Failed to summarize {original_name}: {str(e)}")
|
78 |
st.text_area("", value=st.session_state['summaries'][original_name], height=200, key=f"summary_{original_name}")
|
79 |
|
80 |
+
def page_qna(uploaded_files):
|
81 |
"""Page for Q&A functionality."""
|
82 |
+
st.title("Chat with Data Bank")
|
83 |
+
user_query = st.text_area("Enter your question here:", height=300)
|
84 |
+
if st.button('Get Answer'):
|
85 |
+
if user_query:
|
86 |
+
answer = handle_query(user_query)
|
87 |
+
st.write(answer)
|
88 |
+
else:
|
89 |
+
st.error("Please enter a question to get an answer.")
|
90 |
+
|
91 |
+
def page_chat_with_uploaded_docs(uploaded_files):
|
92 |
+
"""Page for chatting with uploaded documents."""
|
93 |
+
st.title("Chat with Uploaded Documents")
|
94 |
+
user_query = st.text_area("Enter your question here:", height=300)
|
95 |
if st.button('Get Answer'):
|
96 |
if user_query:
|
97 |
+
answer = handle_uploaded_docs_query(user_query, st.session_state['uploaded_collection_name'])
|
98 |
st.write(answer)
|
99 |
else:
|
100 |
st.error("Please enter a question to get an answer.")
|
101 |
+
|
102 |
+
if st.session_state['uploaded_collection_name']:
|
103 |
+
if st.button('Delete Embedded Collection'):
|
104 |
+
collection_name = st.session_state['uploaded_collection_name']
|
105 |
+
delete_collection(collection_name, os.getenv('QDRANT_URL'), os.getenv('QDRANT_API_KEY'))
|
106 |
+
st.session_state['uploaded_collection_name'] = None
|
107 |
+
st.success(f"Deleted collection {collection_name}")
|
108 |
|
109 |
+
def embed_documents_to_data_bank(files_info):
|
110 |
+
"""Function to embed documents into the data bank."""
|
111 |
for temp_path, original_name in files_info:
|
112 |
if not is_document_embedded(original_name):
|
113 |
try:
|
114 |
+
documents = load_documents_OCR(temp_path, os.getenv('UNSTRUCTURED_API'))
|
|
|
|
|
|
|
115 |
documents = update_metadata(documents, original_name)
|
116 |
documents = split_documents(documents)
|
117 |
if documents:
|
118 |
embed_documents_into_qdrant(documents, os.getenv('OPENAI_API_KEY'), os.getenv('QDRANT_URL'), os.getenv('QDRANT_API_KEY'), 'Lex-v1')
|
119 |
+
st.success(f"Embedded {original_name} into Data Bank")
|
120 |
+
else:
|
121 |
+
st.error(f"No documents found or extracted from {original_name}")
|
122 |
+
except Exception as e:
|
123 |
+
st.error(f"Failed to embed {original_name}: {str(e)}")
|
124 |
+
else:
|
125 |
+
st.info(f"{original_name} is already embedded.")
|
126 |
+
|
127 |
+
def add_docs_to_current_chat(files_info):
|
128 |
+
"""Function to add documents to the current chat session."""
|
129 |
+
if not st.session_state['uploaded_collection_name']:
|
130 |
+
st.session_state['uploaded_collection_name'] = f"session-{uuid.uuid4()}"
|
131 |
+
client = setup_qdrant_client(os.getenv('QDRANT_URL'), os.getenv('QDRANT_API_KEY'))
|
132 |
+
client.create_collection(
|
133 |
+
collection_name=st.session_state['uploaded_collection_name'],
|
134 |
+
vectors_config=models.VectorParams(size=1536, distance=models.Distance.COSINE)
|
135 |
+
)
|
136 |
+
else:
|
137 |
+
client = setup_qdrant_client(os.getenv('QDRANT_URL'), os.getenv('QDRANT_API_KEY'))
|
138 |
+
|
139 |
+
embeddings_model = setup_openai_embeddings(os.getenv('OPENAI_API_KEY'))
|
140 |
+
|
141 |
+
for temp_path, original_name in files_info:
|
142 |
+
if not is_document_embedded(original_name):
|
143 |
+
try:
|
144 |
+
documents = load_documents_OCR(temp_path, os.getenv('UNSTRUCTURED_API'))
|
145 |
+
documents = update_metadata(documents, original_name)
|
146 |
+
documents = split_documents(documents)
|
147 |
+
if documents:
|
148 |
+
embed_documents_into_qdrant(documents, os.getenv('OPENAI_API_KEY'), os.getenv('QDRANT_URL'), os.getenv('QDRANT_API_KEY'), collection_name=st.session_state['uploaded_collection_name'])
|
149 |
st.success(f"Embedded {original_name}")
|
150 |
else:
|
151 |
st.error(f"No documents found or extracted from {original_name}")
|
|
|
154 |
else:
|
155 |
st.info(f"{original_name} is already embedded.")
|
156 |
|
157 |
+
def handle_query(query):
|
158 |
"""Retrieve answers based on the query."""
|
159 |
try:
|
160 |
+
answer = retrieve_documents(query, os.getenv('OPENAI_API_KEY'), os.getenv('QDRANT_URL'), os.getenv('QDRANT_API_KEY'))
|
161 |
return answer or "No relevant answer found."
|
162 |
except Exception as e:
|
163 |
return f"Error processing the query: {str(e)}"
|
164 |
|
165 |
+
def handle_uploaded_docs_query(query, collection_name):
|
166 |
+
"""Retrieve answers from the uploaded documents collection."""
|
167 |
+
try:
|
168 |
+
answer = retrieve_documents_from_collection(query, os.getenv('OPENAI_API_KEY'), os.getenv('QDRANT_URL'), os.getenv('QDRANT_API_KEY'), collection_name)
|
169 |
+
return answer or "No relevant answer found."
|
170 |
+
except Exception as e:
|
171 |
+
return f"Error processing the query: {str(e)}"
|
172 |
+
|
173 |
+
def delete_collection(collection_name, qdrant_url, qdrant_api_key):
|
174 |
+
"""Delete a Qdrant collection."""
|
175 |
+
client = setup_qdrant_client(qdrant_url, qdrant_api_key)
|
176 |
+
try:
|
177 |
+
client.delete_collection(collection_name=collection_name)
|
178 |
+
except Exception as e:
|
179 |
+
print("Failed to delete collection:", e)
|
180 |
+
|
181 |
if __name__ == "__main__":
|
182 |
main()
|