import os import tempfile import uuid import streamlit as st from dotenv import load_dotenv from qdrant_client import models from langchain_community.vectorstores import Qdrant from utils import setup_openai_embeddings,setup_qdrant_client,delete_collection,is_document_embedded from embed import embed_documents_into_qdrant from preprocess import split_documents,update_metadata,load_documents_OCR from retrieve import retrieve_documents,retrieve_documents_from_collection from summarize import summarize_documents load_dotenv() def main(): st.sidebar.title("PDF Management") uploaded_files = st.sidebar.file_uploader("Upload PDF files", type=["pdf"], accept_multiple_files=True) if 'uploaded_collection_name' not in st.session_state: st.session_state['uploaded_collection_name'] = None if uploaded_files: if st.sidebar.button("Add Docs to Data Bank"): files_info = save_uploaded_files(uploaded_files) embed_documents_to_data_bank(files_info) if st.sidebar.button("Add Docs to Current Chat"): files_info = save_uploaded_files(uploaded_files) add_docs_to_current_chat(files_info) pages = { "Lex Document Summarization": page_summarization, "Chat with RSCA": page_qna, "Chat with Uploaded Docs": page_chat_with_uploaded_docs } st.sidebar.title("Page Navigation") page = st.sidebar.radio("Select a page", tuple(pages.keys())) # Initialize session state for summarization results if not already set if 'summaries' not in st.session_state: st.session_state['summaries'] = {} # Call the page function based on the user selection if page: pages[page](uploaded_files) def save_uploaded_files(uploaded_files): """Save uploaded files to a temporary directory and return their file paths along with original filenames.""" files_info = [] for uploaded_file in uploaded_files: with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmpfile: tmpfile.write(uploaded_file.getvalue()) files_info.append((tmpfile.name, uploaded_file.name)) return files_info def page_summarization(uploaded_files): """Page for document summarization.""" st.title("Lex Document Summarization") if uploaded_files: files_info = save_uploaded_files(uploaded_files) for temp_path, original_name in files_info: summary_button = st.button(f"Summarize {original_name}", key=original_name) if summary_button or (original_name in st.session_state['summaries']): with st.container(): st.write(f"Summary for {original_name}:") if summary_button: # Only summarize if the button is pressed try: documents = load_documents_OCR(temp_path, os.getenv('UNSTRUCTURED_API')) summary = summarize_documents(documents, os.getenv('OPENAI_API_KEY')) st.session_state['summaries'][original_name] = summary # Store summary in session state except Exception as e: st.error(f"Failed to summarize {original_name}: {str(e)}") st.text_area("", value=st.session_state['summaries'][original_name], height=200, key=f"summary_{original_name}") def page_qna(uploaded_files): """Page for Q&A functionality.""" st.title("Chat with Data Bank") user_query = st.text_area("Enter your question here:", height=300) if st.button('Get Answer'): if user_query: answer = handle_query(user_query) st.write(answer) else: st.error("Please enter a question to get an answer.") def page_chat_with_uploaded_docs(uploaded_files): """Page for chatting with uploaded documents.""" st.title("Chat with Uploaded Documents") user_query = st.text_area("Enter your question here:", height=300) if st.button('Get Answer'): if user_query: answer = handle_uploaded_docs_query(user_query, st.session_state['uploaded_collection_name']) st.write(answer) else: st.error("Please enter a question to get an answer.") if st.session_state['uploaded_collection_name']: if st.button('Delete Embedded Collection'): collection_name = st.session_state['uploaded_collection_name'] delete_collection(collection_name, os.getenv('QDRANT_URL'), os.getenv('QDRANT_API_KEY')) st.session_state['uploaded_collection_name'] = None st.success(f"Deleted collection {collection_name}") def embed_documents_to_data_bank(files_info): """Function to embed documents into the data bank.""" for temp_path, original_name in files_info: if not is_document_embedded(original_name): try: documents = load_documents_OCR(temp_path, os.getenv('UNSTRUCTURED_API')) documents = update_metadata(documents, original_name) documents = split_documents(documents) if documents: embed_documents_into_qdrant(documents, os.getenv('OPENAI_API_KEY'), os.getenv('QDRANT_URL'), os.getenv('QDRANT_API_KEY'), 'Lex-v1') st.success(f"Embedded {original_name} into Data Bank") else: st.error(f"No documents found or extracted from {original_name}") except Exception as e: st.error(f"Failed to embed {original_name}: {str(e)}") else: st.info(f"{original_name} is already embedded.") def add_docs_to_current_chat(files_info): """Function to add documents to the current chat session.""" if not st.session_state['uploaded_collection_name']: st.session_state['uploaded_collection_name'] = f"session-{uuid.uuid4()}" client = setup_qdrant_client(os.getenv('QDRANT_URL'), os.getenv('QDRANT_API_KEY')) client.create_collection( collection_name=st.session_state['uploaded_collection_name'], vectors_config=models.VectorParams(size=1536, distance=models.Distance.COSINE) ) else: client = setup_qdrant_client(os.getenv('QDRANT_URL'), os.getenv('QDRANT_API_KEY')) embeddings_model = setup_openai_embeddings(os.getenv('OPENAI_API_KEY')) for temp_path, original_name in files_info: if not is_document_embedded(original_name): try: documents = load_documents_OCR(temp_path, os.getenv('UNSTRUCTURED_API')) documents = update_metadata(documents, original_name) documents = split_documents(documents) if documents: embed_documents_into_qdrant(documents, os.getenv('OPENAI_API_KEY'), os.getenv('QDRANT_URL'), os.getenv('QDRANT_API_KEY'), collection_name=st.session_state['uploaded_collection_name']) st.success(f"Embedded {original_name}") else: st.error(f"No documents found or extracted from {original_name}") except Exception as e: st.error(f"Failed to embed {original_name}: {str(e)}") else: st.info(f"{original_name} is already embedded.") def handle_query(query): """Retrieve answers based on the query.""" try: answer = retrieve_documents(query, os.getenv('OPENAI_API_KEY'), os.getenv('QDRANT_URL'), os.getenv('QDRANT_API_KEY')) return answer or "No relevant answer found." except Exception as e: return f"Error processing the query: {str(e)}" def handle_uploaded_docs_query(query, collection_name): """Retrieve answers from the uploaded documents collection.""" try: answer = retrieve_documents_from_collection(query, os.getenv('OPENAI_API_KEY'), os.getenv('QDRANT_URL'), os.getenv('QDRANT_API_KEY'), collection_name) return answer or "No relevant answer found." except Exception as e: return f"Error processing the query: {str(e)}" def delete_collection(collection_name, qdrant_url, qdrant_api_key): """Delete a Qdrant collection.""" client = setup_qdrant_client(qdrant_url, qdrant_api_key) try: client.delete_collection(collection_name=collection_name) except Exception as e: print("Failed to delete collection:", e) if __name__ == "__main__": main()