|
import shlex |
|
import subprocess |
|
subprocess.run( |
|
shlex.split( |
|
"pip install package/onnxruntime_gpu-1.17.0-cp310-cp310-manylinux_2_28_x86_64.whl --force-reinstall --no-deps" |
|
) |
|
) |
|
subprocess.run( |
|
shlex.split( |
|
"pip install package/nvdiffrast-0.3.1.torch-cp310-cp310-linux_x86_64.whl --force-reinstall --no-deps" |
|
) |
|
) |
|
|
|
if __name__ == "__main__": |
|
import os |
|
from huggingface_hub import login |
|
hf_token = os.environ.get("HF_TOKEN") |
|
login(token=hf_token) |
|
|
|
import os |
|
import sys |
|
sys.path.append(os.curdir) |
|
import torch |
|
torch.set_float32_matmul_precision('medium') |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.set_grad_enabled(False) |
|
|
|
import fire |
|
import gradio as gr |
|
from gradio_app.gradio_3dgen import create_ui as create_3d_ui |
|
from gradio_app.all_models import model_zoo |
|
|
|
|
|
_TITLE = '''Unique3D: High-Quality and Efficient 3D Mesh Generation from a Single Image''' |
|
_DESCRIPTION = ''' |
|
|
|
<div> |
|
<a style="display:inline-block" href='https://github.com/AiuniAI/Unique3D'><img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/AiuniAI/Unique3D?style=social"> |
|
</a> |
|
<img alt="GitHub License" src="https://img.shields.io/github/license/AiuniAI/Unique3D"> |
|
</div> |
|
|
|
# [Paper](https://arxiv.org/abs/2405.20343) | [Project page](https://wukailu.github.io/Unique3D/) | [Huggingface Demo](https://huggingface.co/spaces/Wuvin/Unique3D) | [Gradio Demo](http://unique3d.demo.avar.cn/) | [Online Demo](https://www.aiuni.ai/) |
|
|
|
* High-fidelity and diverse textured meshes generated by Unique3D from single-view images. |
|
|
|
* The demo is still under construction, and more features are expected to be implemented soon. |
|
|
|
* If the Huggingface Demo is overcrowded or fails to produce stable results, you can use the Online Demo [aiuni.ai](https://www.aiuni.ai/), which is free to try (get the registration invitation code Join Discord: https://discord.gg/aiuni). However, the Online Demo is slightly different from the Gradio Demo, in that the inference speed is slower, but the generation is much more stable. |
|
''' |
|
|
|
def launch(): |
|
model_zoo.init_models() |
|
|
|
with gr.Blocks( |
|
title=_TITLE, |
|
|
|
) as demo: |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
gr.Markdown('# ' + _TITLE) |
|
gr.Markdown(_DESCRIPTION) |
|
create_3d_ui("wkl") |
|
|
|
demo.queue().launch(share=True) |
|
|
|
if __name__ == '__main__': |
|
fire.Fire(launch) |
|
|