File size: 10,226 Bytes
7718032
849fe7e
 
7718032
 
849fe7e
7718032
 
58d8890
4bc845a
 
de7981a
450bd2c
d18abca
450bd2c
 
 
d18abca
 
 
 
9f04bd1
d18abca
 
 
 
 
 
 
 
9f04bd1
450bd2c
 
 
 
b7d6c4c
 
 
 
 
 
 
 
 
 
 
7718032
1f1480d
 
 
 
 
 
 
 
 
 
 
 
 
 
0b066f5
4c807d1
0b066f5
 
4bc845a
 
b7d6c4c
 
4bc845a
 
7718032
b7d6c4c
6db627d
7718032
4bc845a
 
 
 
 
 
 
 
 
 
 
cdb7851
4bc845a
 
 
 
 
 
 
 
de7981a
0f45386
4bc845a
ab9867e
4bc845a
 
 
 
 
 
 
 
 
 
 
 
 
de7981a
4bc845a
 
 
 
7718032
ab9867e
849fe7e
1f1480d
0b10fd7
1f1480d
 
0b10fd7
5178b9b
de7981a
4bc845a
 
 
d18abca
 
 
6bad35a
 
7718032
4b738f1
de7981a
7718032
4b738f1
de7981a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b738f1
 
7718032
4b738f1
 
 
 
 
 
 
 
 
 
 
 
 
 
3ca7acb
 
 
 
4b738f1
 
de7981a
9559379
de7981a
 
 
3ca7acb
 
de7981a
 
 
 
 
 
 
 
 
7718032
4bc845a
fc69002
4bc845a
de7981a
fc69002
 
 
de7981a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b738f1
de7981a
 
0b066f5
7718032
b9d57d5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import gradio as gr
import os 
hf_token = os.environ.get('HF_TOKEN')

lpmc_client = gr.load("seungheondoh/LP-Music-Caps-demo", src="spaces")

from gradio_client import Client

client = Client("https://fffiloni-test-llama-api.hf.space/", hf_token=hf_token)
lyrics_client = Client("https://fffiloni-music-to-lyrics.hf.space/")

from share_btn import community_icon_html, loading_icon_html, share_js

from compel import Compel, ReturnedEmbeddingsType
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0",
                                         torch_dtype=torch.float16, 
                                         use_safetensors=True, 
                                         variant="fp16")
pipe.to("cuda")

compel = Compel(
    tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
    text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
    returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
    requires_pooled=[False, True]
)

#pipe.enable_model_cpu_offload()

# if using torch < 2.0
# pipe.enable_xformers_memory_efficient_attention()

from pydub import AudioSegment

def cut_audio(input_path, output_path, max_duration=30000):
    audio = AudioSegment.from_file(input_path)

    if len(audio) > max_duration:
        audio = audio[:max_duration]

    audio.export(output_path, format="mp3")

    return output_path

def get_text_after_colon(input_text):
    # Find the first occurrence of ":"
    colon_index = input_text.find(":")
    
    # Check if ":" exists in the input_text
    if colon_index != -1:
        # Extract the text after the colon
        result_text = input_text[colon_index + 1:].strip()
        return result_text
    else:
        # Return the original text if ":" is not found
        return input_text


def solo_xd(prompt):
    images = pipe(prompt=prompt).images[0]
    return images

def infer(audio_file, has_lyrics):
    print("NEW INFERENCE ...")

    truncated_audio = cut_audio(audio_file, "trunc_audio.mp3")

    print("Calling LP Music Caps...")
    cap_result = lpmc_client(
    				truncated_audio,	# str (filepath or URL to file) in 'audio_path' Audio component
    				api_name="predict"
    )
    print(f"MUSIC DESC: {cap_result}")

    if has_lyrics == "Yes" : 
        print("""β€”β€”β€”
        Getting Lyrics ...
        """)
        lyrics_result = lyrics_client.predict(
        				audio_file,	# str (filepath or URL to file) in 'Song input' Audio component
        				fn_index=0
        )
        print(f"LYRICS: {lyrics_result}")
    
        llama_q = f"""
        I'll give you a music description + the lyrics of the song. 
        Give me an image description that would fit well with the music description, reflecting the lyrics too. 
        Be creative, do not do list, just an image description as required. Try to think about human characters first.
        Your image description must fit well for a stable diffusion prompt.
    
        Here's the music description :
    
        Β« {cap_result} Β»
    
        And here are the lyrics : 
    
        Β« {lyrics_result} Β»
        
        """
    elif has_lyrics == "No" : 
        
        llama_q = f"""
        I'll give you a music description. 
        Give me an image description that would fit well with the music description. 
        Be creative, do not do list, just an image description as required. Try to think about human characters first.
        Your image description must fit well for a stable diffusion prompt.
    
        Here's the music description :
    
        Β« {cap_result} Β»
        """
    print("""β€”β€”β€”
    Calling Llama2 ...
    """)
    result = client.predict(
    				llama_q,	# str in 'Message' Textbox component
    				api_name="/predict"
    )    
    
    result = get_text_after_colon(result)

    print(f"Llama2 result: {result}")

    # β€”β€”β€”
    print("""β€”β€”β€”
    Calling SD-XL ...
    """)
    prompt = result
    conditioning, pooled = compel(prompt)
    images = pipe(prompt_embeds=conditioning, pooled_prompt_embeds=pooled).images[0]

    print("Finished")
    
    #return cap_result, result, images
    return images, result, gr.update(visible=True), gr.Group.update(visible=True)

css = """
#col-container {max-width: 780px; margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
.animate-spin {
  animation: spin 1s linear infinite;
}
@keyframes spin {
  from {
      transform: rotate(0deg);
  }
  to {
      transform: rotate(360deg);
  }
}
#share-btn-container {
  display: flex; 
  padding-left: 0.5rem !important; 
  padding-right: 0.5rem !important; 
  background-color: #000000; 
  justify-content: center; 
  align-items: center; 
  border-radius: 9999px !important; 
  max-width: 13rem;
}
div#share-btn-container > div {
    flex-direction: row;
    background: black;
    align-items: center;
}
#share-btn-container:hover {
  background-color: #060606;
}
#share-btn {
  all: initial; 
  color: #ffffff;
  font-weight: 600; 
  cursor:pointer; 
  font-family: 'IBM Plex Sans', sans-serif; 
  margin-left: 0.5rem !important; 
  padding-top: 0.5rem !important; 
  padding-bottom: 0.5rem !important;
  right:0;
}
#share-btn * {
  all: unset;
}
#share-btn-container div:nth-child(-n+2){
  width: auto !important;
  min-height: 0px !important;
}
#share-btn-container .wrap {
  display: none !important;
}
#share-btn-container.hidden {
  display: none!important;
}
.footer {
    margin-bottom: 45px;
    margin-top: 10px;
    text-align: center;
    border-bottom: 1px solid #e5e5e5;
}
.footer>p {
    font-size: .8rem;
    display: inline-block;
    padding: 0 10px;
    transform: translateY(10px);
    background: white;
}
.dark .footer {
    border-color: #303030;
}
.dark .footer>p {
    background: #0b0f19;
}
"""
with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.HTML("""<div style="text-align: center; max-width: 700px; margin: 0 auto;">
                <div
                style="
                    display: inline-flex;
                    align-items: center;
                    gap: 0.8rem;
                    font-size: 1.75rem;
                "
                >
                <h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
                    Music To Image
                </h1>
                </div>
                <p style="margin-bottom: 10px; font-size: 94%">
                Sends an audio into <a href="https://huggingface.co/spaces/seungheondoh/LP-Music-Caps-demo" target="_blank">LP-Music-Caps</a>
                to generate a audio caption which is then translated to an illustrative image description with Llama2, and finally run through 
                Stable Diffusion XL to generate an image from the audio ! <br /><br />
                Note: Only the first 30 seconds of your audio will be used for inference.
                </p>
            </div>""")
        
        audio_input = gr.Audio(label="Music input", type="filepath", source="upload")
        with gr.Row():
            has_lyrics = gr.Radio(label="Does your audio has lyrics ?", choices=["Yes", "No"], value="No", info="If yes, the image should reflect the lyrics, but be aware that because we add a step (getting lyrics), inference will take more time.")
            song_title = gr.Textbox(label="Song Title", value="Title: ", interactive=True, info="If you want to share your result, please provide the title of your audio sample :)", elem_id="song-title")
        infer_btn = gr.Button("Generate Image from Music")
        #lpmc_cap = gr.Textbox(label="Lp Music Caps caption")
        with gr.Row():
            llama_trans_cap = gr.Textbox(label="Llama Image Suggestion", placeholder="Llama2 image prompt suggestion will be displayed here ;)", visible=True, lines=12, elem_id="llama-prompt")
            img_result = gr.Image(label="Image Result", elem_id="image-out")
        with gr.Row():
            tryagain_btn = gr.Button("Try another image ?", visible=False)
            with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
                    community_icon = gr.HTML(community_icon_html)
                    loading_icon = gr.HTML(loading_icon_html)
                    share_button = gr.Button("Share to community", elem_id="share-btn")

        gr.Examples(examples=[["./examples/electronic.mp3", "No"],["./examples/folk.wav", "No"], ["./examples/orchestra.wav", "No"]],
                    fn=infer,
                    inputs=[audio_input, has_lyrics],
                    outputs=[img_result, llama_trans_cap, tryagain_btn, share_group],
                    cache_examples=True
                   )

        gr.HTML("""
            <div class="footer">
                <p> 
                Music to Image Demo by πŸ€— <a href="https://twitter.com/fffiloni" target="_blank">Sylvain Filoni</a>
                </p>
            </div>
            <div id="may-like-container" style="display: flex;justify-content: center;flex-direction: column;align-items: center;">
                <p style="font-size: 0.8em;margin-bottom: 4px;">You may also like: </p>
                <div id="may-like" style="display:flex; align-items:center; justify-content: center;height:20px;">
                    <svg height="20" width="182" style="margin-left:4px">       
                        <a href="https://huggingface.co/spaces/fffiloni/Music-To-Zeroscope" target="_blank">
                            <image href="https://img.shields.io/badge/πŸ€— Spaces-Music To Zeroscope-blue" src="https://img.shields.io/badge/πŸ€— Spaces-Music To Zeroscope-blue.png" height="20"/>
                        </a>
                    </svg>
                </div>
            </div>
        """)

    #infer_btn.click(fn=infer, inputs=[audio_input], outputs=[lpmc_cap, llama_trans_cap, img_result])
    infer_btn.click(fn=infer, inputs=[audio_input, has_lyrics], outputs=[img_result, llama_trans_cap, tryagain_btn, share_group])
    share_button.click(None, [], [], _js=share_js)
    tryagain_btn.click(fn=solo_xd, inputs=[llama_trans_cap], outputs=[img_result])

demo.queue(max_size=20).launch()