Spaces:
Runtime error
Runtime error
import gradio as gr | |
lpmc_client = gr.load("seungheondoh/LP-Music-Caps-demo", src="spaces") | |
from gradio_client import Client | |
client = Client("https://ysharma-explore-llamav2-with-tgi.hf.space/") | |
from diffusers import DiffusionPipeline | |
import torch | |
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, use_safetensors=True, variant="fp16") | |
pipe.to("cuda") | |
# if using torch < 2.0 | |
# pipe.enable_xformers_memory_efficient_attention() | |
from pydub import AudioSegment | |
def cut_audio(input_path, output_path, max_duration=30000): | |
audio = AudioSegment.from_file(input_path) | |
if len(audio) > max_duration: | |
audio = audio[:max_duration] | |
audio.export(output_path, format="mp3") | |
return output_path | |
def solo_xd(prompt): | |
images = pipe(prompt=result).images[0] | |
return images | |
def infer(audio_file): | |
truncated_audio = cut_audio(audio_file, "trunc_audio.mp3") | |
cap_result = lpmc_client( | |
truncated_audio, # str (filepath or URL to file) in 'audio_path' Audio component | |
api_name="predict" | |
) | |
print(cap_result) | |
#summarize_q = f""" | |
#I'll give you a list of music descriptions. Create a summary reflecting the musical ambiance. | |
#Do not processs each segment, but provide a summary for the whole instead. | |
#Here's the list: | |
#{cap_result} | |
#""" | |
#summary_result = client.predict( | |
# summarize_q, # str in 'Message' Textbox component | |
# api_name="/chat_1" | |
#) | |
#print(f"SUMMARY: {summary_result}") | |
llama_q = f""" | |
I'll give you music description, then i want you to provide an illustrative image description that would fit well with the music. | |
Answer with only one image description. Never do lists. Do not processs each segment, but provide a summary for the whole instead. | |
Here's the music description : | |
{cap_result} | |
""" | |
result = client.predict( | |
llama_q, # str in 'Message' Textbox component | |
api_name="/chat_1" | |
) | |
print(result) | |
images = pipe(prompt=result).images[0] | |
#return cap_result, result, images | |
return images, gr.update(visible=True) | |
css = """ | |
#col-container {max-width: 510px; margin-left: auto; margin-right: auto;} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.HTML("""<div style="text-align: center; max-width: 700px; margin: 0 auto;"> | |
<div | |
style=" | |
display: inline-flex; | |
align-items: center; | |
gap: 0.8rem; | |
font-size: 1.75rem; | |
" | |
> | |
<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;"> | |
Music To Image | |
</h1> | |
</div> | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
Sends an audio into <a href="https://huggingface.co/spaces/seungheondoh/LP-Music-Caps-demo" target="_blank">LP-Music-Caps</a> | |
to generate a audio caption which is then translated to an illustrative image description with Llama2, and finally run through | |
Stable Diffusion XL to generate an image from the audio ! <br /><br /> | |
Note: Only the first 30 seconds of your audio will be used for inference. | |
</p> | |
</div>""") | |
audio_input = gr.Audio(label="Music input", type="filepath", source="upload") | |
infer_btn = gr.Button("Generate Image from Music") | |
#lpmc_cap = gr.Textbox(label="Lp Music Caps caption") | |
llama_trans_cap = gr.Textbox(label="Llama translation", visible=False) | |
img_result = gr.Image(label="Image Result") | |
tryagain_btn = gr.Button("Try again ?", visible=False) | |
#infer_btn.click(fn=infer, inputs=[audio_input], outputs=[lpmc_cap, llama_trans_cap, img_result]) | |
infer_btn.click(fn=infer, inputs=[audio_input], outputs=[img_result, tryagain_btn]) | |
tryagain_btn.click(fn=solo_xd, inputs=[llama_trans_cap], outputs=[img_result]) | |
demo.queue().launch() |