Music-To-Image / app.py
fffiloni's picture
Update app.py
1b3bbfe
raw
history blame
2.08 kB
import gradio as gr
lpmc_client = gr.load("seungheondoh/LP-Music-Caps-demo", src="spaces")
from gradio_client import Client
client = Client("https://ysharma-explore-llamav2-with-tgi.hf.space/")
from pydub import AudioSegment
def cut_audio(input_path, output_path, max_duration=30000):
audio = AudioSegment.from_file(input_path)
if len(audio) > max_duration:
audio = audio[:max_duration]
audio.export(output_path, format="mp3")
return output_path
def infer(audio_file):
truncated_audio = cut_audio(audio_file, "trunc_audio.mp3")
cap_result = lpmc_client(
truncated_audio, # str (filepath or URL to file) in 'audio_path' Audio component
api_name="predict"
)
print(cap_result)
summarize_q = f"""
I'll give you a list of music descriptions. Create a summary reflecting the musical ambiance.
Do not processs each segment, but provide a summary for the whole instead.
Here's the list:
{cap_result}
"""
summary_result = client.predict(
summarize_q, # str in 'Message' Textbox component
api_name="/chat_1"
)
print(f"SUMMARY: {summary_result}")
llama_q = f"""
I'll give you music description, then i want you to provide an image description that would fit well with the music.
Answer with only one image description. Never do lists.
Here's the music description :
{summary_result}
"""
result = client.predict(
llama_q, # str in 'Message' Textbox component
api_name="/chat_1"
)
print(result)
return cap_result, result
with gr.Blocks() as demo:
with gr.Column(elem_id="col-container"):
audio_input = gr.Audio(type="filepath", source="upload")
infer_btn = gr.Button("Generate")
lpmc_cap = gr.Textbox(label="Lp Music Caps caption")
llama_trans_cap = gr.Textbox(label="Llama translation")
img_result = gr.Video(label="Result")
infer_btn.click(fn=infer, inputs=[audio_input], outputs=[lpmc_cap, llama_trans_cap])
demo.queue().launch()