taesiri's picture
upgraded to claude-2.1
41088df
raw
history blame
9.43 kB
import os
import re
import tempfile
import os
import arxiv
import gradio as gr
import requests
from anthropic import AI_PROMPT, HUMAN_PROMPT, Anthropic
from arxiv_latex_extractor import get_paper_content
from huggingface_hub import HfApi
LEADING_PROMPT = "Read the following paper:"
custom_css = """
div#component-4 #chatbot {
height: 800px !important;
}
rowZ"""
ga_script = """
<script async src="https://www.googletagmanager.com/gtag/js?id=G-EZ77X5T529"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'G-EZ77X5T529');
</script>
"""
def replace_texttt(text):
return re.sub(r"\\texttt\{(.*?)\}", r"*\1*", text)
def get_paper_info(paper_id):
# Create a search query with the arXiv ID
search = arxiv.Search(id_list=[paper_id])
# Fetch the paper using its arXiv ID
paper = next(search.results(), None)
if paper is not None:
# Return the paper's title and abstract
# remove new lines
title_ = paper.title.replace("\n", " ").replace("\r", " ")
summary_ = paper.summary.replace("\n", " ").replace("\r", " ")
return title_, summary_
else:
return None, None
def get_paper_from_huggingface(paper_id):
try:
url = f"https://huggingface.co/datasets/taesiri/arxiv_db/raw/main/papers/{paper_id}.tex"
response = requests.get(url)
response.raise_for_status()
return response.text
except Exception as e:
return None
class ContextualQA:
def __init__(self, client, model="claude-2.1"):
self.client = client
self.model = model
self.context = ""
self.questions = []
self.responses = []
def load_text(self, text):
self.context = text
def ask_question(self, question):
if self.questions:
# For the first question-answer pair, don't add HUMAN_PROMPT before the question
first_pair = f"Question: {self.questions[0]}\n{AI_PROMPT} Answer: {self.responses[0]}"
# For subsequent questions, include both HUMAN_PROMPT and AI_PROMPT
subsequent_pairs = "\n".join(
[
f"{HUMAN_PROMPT} Question: {q}\n{AI_PROMPT} Answer: {a}"
for q, a in zip(self.questions[1:], self.responses[1:])
]
)
history_context = f"{first_pair}\n{subsequent_pairs}"
else:
history_context = ""
full_context = f"{self.context}\n\n{history_context}\n"
prompt = f"{HUMAN_PROMPT} {full_context} {HUMAN_PROMPT} {question} {AI_PROMPT}"
response = self.client.completions.create(
prompt=prompt,
stop_sequences=[HUMAN_PROMPT],
max_tokens_to_sample=6000,
model=self.model,
stream=False,
)
answer = response.completion
self.questions.append(question)
self.responses.append(answer)
return answer
def clear_context(self):
self.context = ""
self.questions = []
self.responses = []
def __getstate__(self):
state = self.__dict__.copy()
del state["client"]
return state
def __setstate__(self, state):
self.__dict__.update(state)
self.client = None
def clean_paper_id(raw_id):
# Remove any leading/trailing spaces
cleaned_id = raw_id.strip()
# Extract paper ID from ArXiv URL if present
match = re.search(r"arxiv\.org\/abs\/([\w\.]+)", cleaned_id)
if match:
cleaned_id = match.group(1)
else:
# Remove trailing dot if present
cleaned_id = re.sub(r"\.$", "", cleaned_id)
return cleaned_id
def load_context(paper_id):
global LEADING_PROMPT
# Clean the paper_id to remove spaces or extract ID from URL
paper_id = clean_paper_id(paper_id)
# Check if the paper is already on Hugging Face
latex_source = get_paper_from_huggingface(paper_id)
paper_downloaded = False
# If not found on Hugging Face, use arxiv_latex_extractor
if not latex_source:
try:
latex_source = get_paper_content(paper_id)
paper_downloaded = True
except Exception as e:
return None, [(f"Error loading paper with id {paper_id}: {e}",)]
if paper_downloaded:
# Save the LaTeX content to a temporary file
with tempfile.NamedTemporaryFile(
mode="w+", suffix=".tex", delete=False
) as tmp_file:
tmp_file.write(latex_source)
temp_file_path = tmp_file.name
# Upload the paper to Hugging Face
try:
if os.path.getsize(temp_file_path) > 1:
hf_api = HfApi(token=os.environ["HUGGINGFACE_TOKEN"])
hf_api.upload_file(
path_or_fileobj=temp_file_path,
path_in_repo=f"papers/{paper_id}.tex",
repo_id="taesiri/arxiv_db",
repo_type="dataset",
)
except Exception as e:
print(f"Error uploading paper with id {paper_id}: {e}")
# Initialize the Anthropic client and QA model
client = Anthropic(api_key=os.environ["ANTHROPIC_API_KEY"])
qa_model = ContextualQA(client, model="claude-2.1")
context = f"{LEADING_PROMPT}\n{latex_source}"
qa_model.load_text(context)
# Get the paper's title and abstract
title, abstract = get_paper_info(paper_id)
title = replace_texttt(title)
abstract = replace_texttt(abstract)
return (
qa_model,
[
(
f"Load the paper with id {paper_id}.",
f"\n**Title**: {title}\n\n**Abstract**: {abstract}\n\nPaper loaded. You can now ask questions.",
)
],
)
def answer_fn(qa_model, question, chat_history):
# if question is empty, tell user that they need to ask a question
if question == "":
chat_history.append(("No Question Asked", "Please ask a question."))
return qa_model, chat_history, ""
client = Anthropic(api_key=os.environ["ANTHROPIC_API_KEY"])
qa_model.client = client
try:
answer = qa_model.ask_question(question)
except Exception as e:
chat_history.append(("Error Asking Question", str(e)))
return qa_model, chat_history, ""
chat_history.append((question, answer))
return qa_model, chat_history, ""
def clear_context():
return []
with gr.Blocks(
theme=gr.themes.Soft(), css=custom_css, title="ArXiv QA with Claude", head=ga_script
) as demo:
gr.HTML(
"""
<h1 style='text-align: center; font-size: 24px;'>
Explore ArXiv Papers in Depth with πŸ”₯ <code>claude-2.1</code> πŸ”₯- Ask Questions and Get Answers Instantly
</h1>
"""
)
# gr.HTML(
# """
# <p style='text-align: justify; font-size: 18px; margin: 10px;'>
# Explore the depths of ArXiv papers with our interactive app, powered by the advanced <code>claude-2.1</code> model. Ask detailed questions and get immediate, context-rich answers from academic papers.
# </p>
# """
# )
gr.HTML(
"""
<center>
<a href="https://huggingface.co/spaces/taesiri/ClaudeReadsArxiv?duplicate=true">
<img src="https://bit.ly/3gLdBN6" alt="Duplicate Space" style="vertical-align: middle; max-width: 100px; margin-right: 10px;">
</a>
<span style="font-size: 14px; vertical-align: middle;">
Duplicate the Space with your Anthropic API Key &nbsp;|&nbsp;
Follow me on Twitter for more updates: <a href="https://twitter.com/taesiri" target="_blank">@taesiri</a>
</span>
</center>
"""
)
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(
elem_id="chatbot",
avatar_images=("./assets/user.png", "./assets/Claude.png"),
)
with gr.Column(scale=1):
paper_id_input = gr.Textbox(label="Enter Paper ID", value="2310.12103")
btn_load = gr.Button("Load Paper")
qa_model = gr.State()
question_txt = gr.Textbox(
label="Question", lines=5, placeholder="Type your question here..."
)
btn_answer = gr.Button("Answer Question")
btn_clear = gr.Button("Clear Chat")
gr.HTML(
"""<center>All the inputs are being sent to Anthropic's Claude endpoints. Please refer to <a href="https://legal.anthropic.com/#privacy">this link</a> for privacy policy.</center>"""
)
gr.Markdown(
"## Acknowledgements\n"
"This project is made possible through the generous support of "
"[Anthropic](https://www.anthropic.com/), who provided free access to the `claude-2.1` API."
)
btn_load.click(load_context, inputs=[paper_id_input], outputs=[qa_model, chatbot])
btn_answer.click(
answer_fn,
inputs=[qa_model, question_txt, chatbot],
outputs=[qa_model, chatbot, question_txt],
)
question_txt.submit(
answer_fn,
inputs=[qa_model, question_txt, chatbot],
outputs=[qa_model, chatbot, question_txt],
)
btn_clear.click(clear_context, outputs=[chatbot])
demo.launch()
# app.mount("/js", StaticFiles(directory="js"), name="js")
# gr.mount_gradio_app(app, demo, path="/")