File size: 6,071 Bytes
8390f90 7de8585 8390f90 7de8585 8390f90 cb998cb 8390f90 cb998cb 8390f90 7de8585 cb998cb 8c622b4 7de8585 8390f90 7de8585 cb998cb 8390f90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
from torch.utils.data import DataLoader
import torch
from model.base.geometry import Geometry
from common.evaluation import Evaluator
from common.logger import AverageMeter
from common.logger import Logger
from data import download
from model import chmnet
from itertools import product
import matplotlib
import matplotlib.patches as patches
from matplotlib.patches import ConnectionPatch
from matplotlib import pyplot as plt
from PIL import Image
import numpy as np
import os
import torchvision
import torchvision.transforms as transforms
import torchvision.transforms.functional as TF
import torchvision.models as models
import torch.nn as nn
import torch.nn.functional as F
import random
import gradio as gr
# Downloading the Model
torchvision.datasets.utils.download_file_from_google_drive('1zsJRlAsoOn5F0GTCprSFYwDDfV85xDy6', '.', 'pas_psi.pt')
# Model Initialization
args = dict({
'alpha' : [0.05, 0.1],
'benchmark':'pfpascal',
'bsz':90,
'datapath':'../Datasets_CHM',
'img_size':240,
'ktype':'psi',
'load':'pas_psi.pt',
'thres':'img'
})
model = chmnet.CHMNet(args['ktype'])
model.load_state_dict(torch.load(args['load'], map_location=torch.device('cpu')))
Evaluator.initialize(args['alpha'])
Geometry.initialize(img_size=args['img_size'])
model.eval();
# Transforms
chm_transform = transforms.Compose(
[transforms.Resize(args['img_size']),
transforms.CenterCrop((args['img_size'], args['img_size'])),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])])
chm_transform_plot = transforms.Compose(
[transforms.Resize(args['img_size']),
transforms.CenterCrop((args['img_size'], args['img_size']))])
# A Helper Function
to_np = lambda x: x.data.to('cpu').numpy()
# Colors for Plotting
cmap = matplotlib.cm.get_cmap('Spectral')
rgba = cmap(0.5)
colors = []
for k in range(49):
colors.append(cmap(k/49.0))
# CHM MODEL
def run_chm(source_image, target_image, selected_points, number_src_points , chm_transform, display_transform):
# Convert to Tensor
src_img_tnsr = chm_transform(source_image).unsqueeze(0)
tgt_img_tnsr = chm_transform(target_image).unsqueeze(0)
# Selected_points = selected_points.T
keypoints = torch.tensor(selected_points).unsqueeze(0)
n_pts = torch.tensor(np.asarray([number_src_points]))
# RUN CHM ------------------------------------------------------------------------
with torch.no_grad():
corr_matrix = model(src_img_tnsr, tgt_img_tnsr)
prd_kps = Geometry.transfer_kps(corr_matrix, keypoints, n_pts, normalized=False)
# VISUALIZATION
src_points = keypoints[0].squeeze(0).squeeze(0).numpy()
tgt_points = prd_kps[0].squeeze(0).squeeze(0).cpu().numpy()
src_points_converted = []
w, h = display_transform(source_image).size
for x,y in zip(src_points[0], src_points[1]):
src_points_converted.append([int(x*w/args['img_size']),int((y)*h/args['img_size'])])
src_points_converted = np.asarray(src_points_converted[:number_src_points])
tgt_points_converted = []
w, h = display_transform(target_image).size
for x, y in zip(tgt_points[0], tgt_points[1]):
tgt_points_converted.append([int(((x+1)/2.0)*w),int(((y+1)/2.0)*h)])
tgt_points_converted = np.asarray(tgt_points_converted[:number_src_points])
tgt_grid = []
for x, y in zip(tgt_points[0], tgt_points[1]):
tgt_grid.append([int(((x+1)/2.0)*7),int(((y+1)/2.0)*7)])
# PLOT
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(12, 8))
ax[0].imshow(display_transform(source_image))
ax[0].scatter(src_points_converted[:, 0], src_points_converted[:, 1], c=colors[:number_src_points])
ax[0].set_title('Source')
ax[0].set_xticks([])
ax[0].set_yticks([])
ax[1].imshow(display_transform(target_image))
ax[1].scatter(tgt_points_converted[:, 0], tgt_points_converted[:, 1], c=colors[:number_src_points])
ax[1].set_title('Target')
ax[1].set_xticks([])
ax[1].set_yticks([])
for TL in range(49):
ax[0].text(x=src_points_converted[TL][0], y=src_points_converted[TL][1], s=str(TL), fontdict=dict(color='red', size=11))
for TL in range(49):
ax[1].text(x=tgt_points_converted[TL][0], y=tgt_points_converted[TL][1], s=f'{str(TL)}', fontdict=dict(color='orange', size=11))
plt.tight_layout()
fig.suptitle('CHM Correspondences\nUsing $\it{pas\_psi.pt}$ Weights ', fontsize=16)
return fig
# Wrapper
def generate_correspondences(sousrce_image, target_image, min_x=1, max_x=100, min_y=1, max_y=100):
A = np.linspace(min_x, max_x, 7)
B = np.linspace(min_y, max_y, 7)
point_list = list(product(A, B))
new_points = np.asarray(point_list, dtype=np.float64).T
return run_chm(sousrce_image, target_image, selected_points=new_points, number_src_points=49, chm_transform=chm_transform, display_transform=chm_transform_plot)
# GRADIO APP
title = "Correspondence Matching with Convolutional Hough Matching Networks "
description = "Performs keypoint transform from a 7x7 gird on the source image to the target image. Use the sliders to adjust the grid."
article = "<p style='text-align: center'><a href='https://github.com/juhongm999/chm' target='_blank'>Original Github Repo</a></p>"
iface = gr.Interface(fn=generate_correspondences,
inputs=[gr.inputs.Image(shape=(240, 240), type='pil'),
gr.inputs.Image(shape=(240, 240), type='pil'),
gr.inputs.Slider(minimum=1, maximum=240, step=1, default=15, label='Min X'),
gr.inputs.Slider(minimum=1, maximum=240, step=1, default=215, label='Max X'),
gr.inputs.Slider(minimum=1, maximum=240, step=1, default=15, label='Min Y'),
gr.inputs.Slider(minimum=1, maximum=240, step=1, default=215, label='Max Y')], outputs="plot", enable_queue=True, title=title,
description=description,
article=article,
examples=[['sample1.jpeg', 'sample2.jpeg', 15, 215, 15, 215]])
iface.launch() |