File size: 6,071 Bytes
8390f90
 
 
 
 
 
 
 
7de8585
 
 
8390f90
7de8585
8390f90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb998cb
8390f90
 
cb998cb
8390f90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7de8585
cb998cb
8c622b4
7de8585
8390f90
 
 
7de8585
 
 
 
 
cb998cb
 
8390f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from torch.utils.data import DataLoader
import torch
from model.base.geometry import Geometry
from common.evaluation import Evaluator
from common.logger import AverageMeter
from common.logger import Logger
from data import download
from model import chmnet
from itertools import product
import matplotlib
import matplotlib.patches as patches
from matplotlib.patches import ConnectionPatch
from matplotlib import pyplot as plt
from PIL import Image
import numpy as np
import os
import torchvision
import torchvision.transforms as transforms
import torchvision.transforms.functional as TF
import torchvision.models as models
import torch.nn as nn
import torch.nn.functional as F
import random
import gradio as gr

# Downloading the Model
torchvision.datasets.utils.download_file_from_google_drive('1zsJRlAsoOn5F0GTCprSFYwDDfV85xDy6', '.', 'pas_psi.pt')

# Model Initialization
args = dict({
    'alpha' : [0.05, 0.1], 
    'benchmark':'pfpascal', 
    'bsz':90, 
    'datapath':'../Datasets_CHM', 
    'img_size':240, 
    'ktype':'psi', 
    'load':'pas_psi.pt',
    'thres':'img'
    })

model = chmnet.CHMNet(args['ktype'])
model.load_state_dict(torch.load(args['load'], map_location=torch.device('cpu')))
Evaluator.initialize(args['alpha'])
Geometry.initialize(img_size=args['img_size'])
model.eval();

# Transforms

chm_transform = transforms.Compose(
   [transforms.Resize(args['img_size']),
    transforms.CenterCrop((args['img_size'], args['img_size'])),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])])

chm_transform_plot = transforms.Compose(
   [transforms.Resize(args['img_size']),
    transforms.CenterCrop((args['img_size'], args['img_size']))])

# A Helper Function
to_np = lambda x: x.data.to('cpu').numpy()

# Colors for Plotting
cmap = matplotlib.cm.get_cmap('Spectral')
rgba = cmap(0.5)
colors = []
for k in range(49):
  colors.append(cmap(k/49.0))


# CHM MODEL
def run_chm(source_image, target_image, selected_points, number_src_points , chm_transform, display_transform):
      # Convert to Tensor
  src_img_tnsr = chm_transform(source_image).unsqueeze(0)
  tgt_img_tnsr = chm_transform(target_image).unsqueeze(0)

  # Selected_points = selected_points.T 
  keypoints = torch.tensor(selected_points).unsqueeze(0)
  n_pts = torch.tensor(np.asarray([number_src_points]))

  # RUN CHM ------------------------------------------------------------------------
  with torch.no_grad():
    corr_matrix = model(src_img_tnsr, tgt_img_tnsr)
    prd_kps = Geometry.transfer_kps(corr_matrix, keypoints, n_pts, normalized=False)
  
  # VISUALIZATION
  src_points = keypoints[0].squeeze(0).squeeze(0).numpy()
  tgt_points = prd_kps[0].squeeze(0).squeeze(0).cpu().numpy()

  src_points_converted  = []
  w, h = display_transform(source_image).size

  for x,y in zip(src_points[0], src_points[1]):
    src_points_converted.append([int(x*w/args['img_size']),int((y)*h/args['img_size'])])

  src_points_converted = np.asarray(src_points_converted[:number_src_points])
  tgt_points_converted  = []

  w, h = display_transform(target_image).size
  for x, y in zip(tgt_points[0], tgt_points[1]):
    tgt_points_converted.append([int(((x+1)/2.0)*w),int(((y+1)/2.0)*h)])

  tgt_points_converted = np.asarray(tgt_points_converted[:number_src_points])
  
  tgt_grid  = []
  
  for x, y in zip(tgt_points[0], tgt_points[1]):
    tgt_grid.append([int(((x+1)/2.0)*7),int(((y+1)/2.0)*7)])
  
  # PLOT
  fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(12, 8))

  ax[0].imshow(display_transform(source_image))
  ax[0].scatter(src_points_converted[:, 0], src_points_converted[:, 1], c=colors[:number_src_points])
  ax[0].set_title('Source')
  ax[0].set_xticks([])
  ax[0].set_yticks([])

  ax[1].imshow(display_transform(target_image))
  ax[1].scatter(tgt_points_converted[:, 0], tgt_points_converted[:, 1], c=colors[:number_src_points])
  ax[1].set_title('Target')
  ax[1].set_xticks([])
  ax[1].set_yticks([])

  for TL in range(49):
    ax[0].text(x=src_points_converted[TL][0], y=src_points_converted[TL][1], s=str(TL), fontdict=dict(color='red', size=11))

  for TL in range(49):
    ax[1].text(x=tgt_points_converted[TL][0], y=tgt_points_converted[TL][1], s=f'{str(TL)}', fontdict=dict(color='orange', size=11))

  plt.tight_layout()
  fig.suptitle('CHM Correspondences\nUsing $\it{pas\_psi.pt}$ Weights ', fontsize=16)
  return fig


# Wrapper 
def generate_correspondences(sousrce_image, target_image, min_x=1, max_x=100, min_y=1, max_y=100):
  A = np.linspace(min_x, max_x, 7)
  B = np.linspace(min_y, max_y, 7)
  point_list = list(product(A, B))
  new_points = np.asarray(point_list, dtype=np.float64).T
  return run_chm(sousrce_image, target_image, selected_points=new_points, number_src_points=49, chm_transform=chm_transform, display_transform=chm_transform_plot)


# GRADIO APP
title = "Correspondence Matching with Convolutional Hough Matching Networks "
description = "Performs keypoint transform from a 7x7 gird on the source image to the target image. Use the sliders to adjust the grid."
article = "<p style='text-align: center'><a href='https://github.com/juhongm999/chm' target='_blank'>Original Github Repo</a></p>"

iface = gr.Interface(fn=generate_correspondences, 
                     inputs=[gr.inputs.Image(shape=(240, 240), type='pil'), 
                             gr.inputs.Image(shape=(240, 240), type='pil'),
                             gr.inputs.Slider(minimum=1, maximum=240, step=1, default=15, label='Min X'),
                             gr.inputs.Slider(minimum=1, maximum=240, step=1, default=215, label='Max X'),
                             gr.inputs.Slider(minimum=1, maximum=240, step=1, default=15, label='Min Y'),
                             gr.inputs.Slider(minimum=1, maximum=240, step=1, default=215, label='Max Y')], outputs="plot", enable_queue=True, title=title,
                            description=description,
                            article=article,
                            examples=[['sample1.jpeg', 'sample2.jpeg', 15, 215, 15, 215]])
iface.launch()