|
r""" ResNet-101 backbone network """
|
|
|
|
import torch.utils.model_zoo as model_zoo
|
|
import torch.nn as nn
|
|
import torch
|
|
|
|
|
|
__all__ = ['Backbone', 'resnet101']
|
|
|
|
|
|
model_urls = {
|
|
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
|
|
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
|
|
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
|
|
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
|
|
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
|
|
}
|
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1):
|
|
r""" 3x3 convolution with padding """
|
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
|
padding=1, groups=2, bias=False)
|
|
|
|
|
|
def conv1x1(in_planes, out_planes, stride=1):
|
|
r""" 1x1 convolution """
|
|
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, groups=2, bias=False)
|
|
|
|
|
|
class Bottleneck(nn.Module):
|
|
expansion = 4
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
|
super(Bottleneck, self).__init__()
|
|
self.conv1 = conv1x1(inplanes, planes)
|
|
self.bn1 = nn.BatchNorm2d(planes)
|
|
self.conv2 = conv3x3(planes, planes, stride)
|
|
self.bn2 = nn.BatchNorm2d(planes)
|
|
self.conv3 = conv1x1(planes, planes * self.expansion)
|
|
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
|
|
def forward(self, x):
|
|
identity = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv3(out)
|
|
out = self.bn3(out)
|
|
|
|
if self.downsample is not None:
|
|
identity = self.downsample(x)
|
|
|
|
out += identity
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
class Backbone(nn.Module):
|
|
def __init__(self, block, layers, zero_init_residual=False):
|
|
super(Backbone, self).__init__()
|
|
|
|
self.inplanes = 128
|
|
self.conv1 = nn.Conv2d(6, 128, kernel_size=7, stride=2, padding=3, groups=2,
|
|
bias=False)
|
|
self.bn1 = nn.BatchNorm2d(128)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
|
self.layer1 = self._make_layer(block, 128, layers[0])
|
|
self.layer2 = self._make_layer(block, 256, layers[1], stride=2)
|
|
self.layer3 = self._make_layer(block, 512, layers[2], stride=2)
|
|
self.layer4 = self._make_layer(block, 1024, layers[3], stride=2)
|
|
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
|
self.fc = nn.Linear(512 * block.expansion, 1000)
|
|
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
nn.init.constant_(m.weight, 1)
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
|
|
|
|
|
|
if zero_init_residual:
|
|
for m in self.modules():
|
|
if isinstance(m, Bottleneck):
|
|
nn.init.constant_(m.bn3.weight, 0)
|
|
|
|
def _make_layer(self, block, planes, blocks, stride=1):
|
|
downsample = None
|
|
if stride != 1 or self.inplanes != planes * block.expansion:
|
|
downsample = nn.Sequential(
|
|
conv1x1(self.inplanes, planes * block.expansion, stride),
|
|
nn.BatchNorm2d(planes * block.expansion),
|
|
)
|
|
|
|
layers = []
|
|
layers.append(block(self.inplanes, planes, stride, downsample))
|
|
self.inplanes = planes * block.expansion
|
|
for _ in range(1, blocks):
|
|
layers.append(block(self.inplanes, planes))
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
|
|
def resnet101(pretrained=False, **kwargs):
|
|
"""Constructs a ResNet-101 model.
|
|
|
|
Args:
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
"""
|
|
model = Backbone(Bottleneck, [3, 4, 23, 3], **kwargs)
|
|
if pretrained:
|
|
weights = model_zoo.load_url(model_urls['resnet101'])
|
|
|
|
for key in weights:
|
|
if key.split('.')[0] == 'fc':
|
|
weights[key] = weights[key].clone()
|
|
continue
|
|
weights[key] = torch.cat([weights[key].clone(), weights[key].clone()], dim=0)
|
|
|
|
model.load_state_dict(weights)
|
|
return model
|
|
|
|
|