File size: 5,320 Bytes
6e14436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# Copyright (c) Facebook, Inc. and its affiliates.
import contextlib
import copy
import io
import itertools
import json
import logging
import numpy as np
import os
import pickle
from collections import OrderedDict
import pycocotools.mask as mask_util
import torch
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from tabulate import tabulate

import detectron2.utils.comm as comm
from detectron2.config import CfgNode
from detectron2.data import MetadataCatalog
from detectron2.data.datasets.coco import convert_to_coco_json
from detectron2.evaluation.coco_evaluation import COCOEvaluator
from detectron2.structures import Boxes, BoxMode, pairwise_iou
from detectron2.utils.file_io import PathManager
from detectron2.utils.logger import create_small_table
from ..data.datasets.coco_zeroshot import categories_seen, categories_unseen

class CustomCOCOEvaluator(COCOEvaluator):
    def _derive_coco_results(self, coco_eval, iou_type, class_names=None):
        """
        Additionally plot mAP for 'seen classes' and 'unseen classes'
        """
        
        metrics = {
            "bbox": ["AP", "AP50", "AP75", "APs", "APm", "APl"],
            "segm": ["AP", "AP50", "AP75", "APs", "APm", "APl"],
            "keypoints": ["AP", "AP50", "AP75", "APm", "APl"],
        }[iou_type]

        if coco_eval is None:
            self._logger.warn("No predictions from the model!")
            return {metric: float("nan") for metric in metrics}

        # the standard metrics
        results = {
            metric: float(coco_eval.stats[idx] * 100 if coco_eval.stats[idx] >= 0 else "nan")
            for idx, metric in enumerate(metrics)
        }
        self._logger.info(
            "Evaluation results for {}: \n".format(iou_type) + create_small_table(results)
        )
        if not np.isfinite(sum(results.values())):
            self._logger.info("Some metrics cannot be computed and is shown as NaN.")

        if class_names is None or len(class_names) <= 1:
            return results
        # Compute per-category AP
        # from https://github.com/facebookresearch/Detectron/blob/a6a835f5b8208c45d0dce217ce9bbda915f44df7/detectron/datasets/json_dataset_evaluator.py#L222-L252 # noqa
        precisions = coco_eval.eval["precision"]
        # precision has dims (iou, recall, cls, area range, max dets)
        assert len(class_names) == precisions.shape[2]

        seen_names = set([x['name'] for x in categories_seen])
        unseen_names = set([x['name'] for x in categories_unseen])
        results_per_category = []
        results_per_category50 = []
        results_per_category50_seen = []
        results_per_category50_unseen = []
        for idx, name in enumerate(class_names):
            # area range index 0: all area ranges
            # max dets index -1: typically 100 per image
            precision = precisions[:, :, idx, 0, -1]
            precision = precision[precision > -1]
            ap = np.mean(precision) if precision.size else float("nan")
            results_per_category.append(("{}".format(name), float(ap * 100)))
            precision50 = precisions[0, :, idx, 0, -1]
            precision50 = precision50[precision50 > -1]
            ap50 = np.mean(precision50) if precision50.size else float("nan")
            results_per_category50.append(("{}".format(name), float(ap50 * 100)))
            if name in seen_names:
                results_per_category50_seen.append(float(ap50 * 100))
            if name in unseen_names:
                results_per_category50_unseen.append(float(ap50 * 100))

        # tabulate it
        N_COLS = min(6, len(results_per_category) * 2)
        results_flatten = list(itertools.chain(*results_per_category))
        results_2d = itertools.zip_longest(*[results_flatten[i::N_COLS] for i in range(N_COLS)])
        table = tabulate(
            results_2d,
            tablefmt="pipe",
            floatfmt=".3f",
            headers=["category", "AP"] * (N_COLS // 2),
            numalign="left",
        )
        self._logger.info("Per-category {} AP: \n".format(iou_type) + table)


        N_COLS = min(6, len(results_per_category50) * 2)
        results_flatten = list(itertools.chain(*results_per_category50))
        results_2d = itertools.zip_longest(*[results_flatten[i::N_COLS] for i in range(N_COLS)])
        table = tabulate(
            results_2d,
            tablefmt="pipe",
            floatfmt=".3f",
            headers=["category", "AP50"] * (N_COLS // 2),
            numalign="left",
        )
        self._logger.info("Per-category {} AP50: \n".format(iou_type) + table)
        self._logger.info(
            "Seen {} AP50: {}".format(
                iou_type,
                sum(results_per_category50_seen) / len(results_per_category50_seen),
            ))
        self._logger.info(
            "Unseen {} AP50: {}".format(
                iou_type,
                sum(results_per_category50_unseen) / len(results_per_category50_unseen),
            ))

        results.update({"AP-" + name: ap for name, ap in results_per_category})
        results["AP50-seen"] = sum(results_per_category50_seen) / len(results_per_category50_seen)
        results["AP50-unseen"] = sum(results_per_category50_unseen) / len(results_per_category50_unseen)
        return results