File size: 4,377 Bytes
8b8fc21
 
6e14436
 
 
 
8b8fc21
 
 
6e14436
 
8b8fc21
 
 
6e14436
 
 
 
 
 
 
 
 
8b8fc21
6e14436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b8fc21
 
6e14436
 
 
 
 
 
 
 
 
 
8b8fc21
6e14436
8b8fc21
6e14436
8b8fc21
 
 
 
6e14436
 
 
 
 
8b8fc21
 
 
 
6e14436
 
 
8b8fc21
 
 
 
6e14436
 
8b8fc21
6e14436
 
 
 
 
 
 
8b8fc21
6e14436
 
 
 
 
 
 
 
8b8fc21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e14436
 
 
 
 
 
8b8fc21
 
 
 
 
 
 
 
 
 
6e14436
 
8b8fc21
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import os

os.system("pip install gradio==2.4.6")
import sys
import gradio as gr

os.system(
    "pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html"
)

# clone and install Detic
os.system(
    "git clone https://github.com/facebookresearch/Detic.git --recurse-submodules"
)
os.chdir("Detic")

# Install detectron2
import torch

# Some basic setup:
# Setup detectron2 logger
import detectron2
from detectron2.utils.logger import setup_logger

setup_logger()

# import some common libraries
import sys
import numpy as np
import os, json, cv2, random

# import some common detectron2 utilities
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog

# Detic libraries
sys.path.insert(0, "third_party/CenterNet2/projects/CenterNet2/")
sys.path.insert(0, "third_party/CenterNet2/")
from centernet.config import add_centernet_config
from detic.config import add_detic_config
from detic.modeling.utils import reset_cls_test

from PIL import Image

# Build the detector and download our pretrained weights
cfg = get_cfg()
add_centernet_config(cfg)
add_detic_config(cfg)
cfg.MODEL.DEVICE = "cpu"
cfg.merge_from_file("configs/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.yaml")
cfg.MODEL.WEIGHTS = "https://dl.fbaipublicfiles.com/detic/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.pth"
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5  # set threshold for this model
cfg.MODEL.ROI_BOX_HEAD.ZEROSHOT_WEIGHT_PATH = "rand"
cfg.MODEL.ROI_HEADS.ONE_CLASS_PER_PROPOSAL = (
    True  # For better visualization purpose. Set to False for all classes.
)
predictor = DefaultPredictor(cfg)

# Setup the model's vocabulary using build-in datasets

BUILDIN_CLASSIFIER = {
    "lvis": "datasets/metadata/lvis_v1_clip_a+cname.npy",
    "objects365": "datasets/metadata/o365_clip_a+cnamefix.npy",
    "openimages": "datasets/metadata/oid_clip_a+cname.npy",
    "coco": "datasets/metadata/coco_clip_a+cname.npy",
}

BUILDIN_METADATA_PATH = {
    "lvis": "lvis_v1_val",
    "objects365": "objects365_v2_val",
    "openimages": "oid_val_expanded",
    "coco": "coco_2017_val",
}

vocabulary = "lvis"  # change to 'lvis', 'objects365', 'openimages', or 'coco'
metadata = MetadataCatalog.get(BUILDIN_METADATA_PATH[vocabulary])
classifier = BUILDIN_CLASSIFIER[vocabulary]
num_classes = len(metadata.thing_classes)
reset_cls_test(predictor.model, classifier, num_classes)

os.system("wget https://web.eecs.umich.edu/~fouhey/fun/desk/desk.jpg")


def inference(img):

    im = cv2.imread(img)

    outputs = predictor(im)
    v = Visualizer(im[:, :, ::-1], metadata)
    out = v.draw_instance_predictions(outputs["instances"].to("cpu"))

    detected_objects = []
    box_locations = outputs["instances"].pred_boxes
    box_loc_screen = box_locations.tensor.cpu().numpy()

    for i, box_coord in enumerate(box_loc_screen):
        x0, y0, x1, y1 = box_coord
        width = x1 - x0
        height = y1 - y0
        predicted_label = metadata.thing_classes[outputs["instances"].pred_classes[i]]
        detected_objects.append(
            {
                "prediction": predicted_label,
                "x": int(x0),
                "y": int(y0),
                "w": int(width),
                "h": int(height),
            }
        )

    return Image.fromarray(np.uint8(out.get_image())).convert("RGB"), detected_objects


title = "Detic"

description = "Gradio demo for Detic: Detecting Twenty-thousand Classes using Image-level Supervision. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."

article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.02605' target='_blank'>Detecting Twenty-thousand Classes using Image-level Supervision</a> | <a href='https://github.com/facebookresearch/Detic' target='_blank'>Github Repo</a></p>"

examples = [["desk.jpg"]]
gr.Interface(
    inference,
    inputs=gr.inputs.Image(type="filepath"),
    outputs=[
        gr.outputs.Image(label="Visualization", type="pil"),
        gr.outputs.JSON(label="Detected Objects"),
    ],
    enable_queue=True,
    title=title,
    description=description,
    article=article,
    examples=examples,
).launch()