import os os.system("pip install gradio==2.4.6") import sys import gradio as gr os.system( "pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html" ) # clone and install Detic os.system( "git clone https://github.com/facebookresearch/Detic.git --recurse-submodules" ) os.chdir("Detic") # Install detectron2 import torch # Some basic setup: # Setup detectron2 logger import detectron2 from detectron2.utils.logger import setup_logger setup_logger() # import some common libraries import sys import numpy as np import os, json, cv2, random # import some common detectron2 utilities from detectron2 import model_zoo from detectron2.engine import DefaultPredictor from detectron2.config import get_cfg from detectron2.utils.visualizer import Visualizer from detectron2.data import MetadataCatalog, DatasetCatalog # Detic libraries sys.path.insert(0, "third_party/CenterNet2/projects/CenterNet2/") sys.path.insert(0, "third_party/CenterNet2/") from centernet.config import add_centernet_config from detic.config import add_detic_config from detic.modeling.utils import reset_cls_test from PIL import Image # Build the detector and download our pretrained weights cfg = get_cfg() add_centernet_config(cfg) add_detic_config(cfg) cfg.MODEL.DEVICE = "cpu" cfg.merge_from_file("configs/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.yaml") cfg.MODEL.WEIGHTS = "https://dl.fbaipublicfiles.com/detic/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.pth" cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold for this model cfg.MODEL.ROI_BOX_HEAD.ZEROSHOT_WEIGHT_PATH = "rand" cfg.MODEL.ROI_HEADS.ONE_CLASS_PER_PROPOSAL = ( True # For better visualization purpose. Set to False for all classes. ) predictor = DefaultPredictor(cfg) # Setup the model's vocabulary using build-in datasets BUILDIN_CLASSIFIER = { "lvis": "datasets/metadata/lvis_v1_clip_a+cname.npy", "objects365": "datasets/metadata/o365_clip_a+cnamefix.npy", "openimages": "datasets/metadata/oid_clip_a+cname.npy", "coco": "datasets/metadata/coco_clip_a+cname.npy", } BUILDIN_METADATA_PATH = { "lvis": "lvis_v1_val", "objects365": "objects365_v2_val", "openimages": "oid_val_expanded", "coco": "coco_2017_val", } vocabulary = "lvis" # change to 'lvis', 'objects365', 'openimages', or 'coco' metadata = MetadataCatalog.get(BUILDIN_METADATA_PATH[vocabulary]) classifier = BUILDIN_CLASSIFIER[vocabulary] num_classes = len(metadata.thing_classes) reset_cls_test(predictor.model, classifier, num_classes) os.system("wget https://web.eecs.umich.edu/~fouhey/fun/desk/desk.jpg") def inference(img): im = cv2.imread(img) outputs = predictor(im) v = Visualizer(im[:, :, ::-1], metadata) out = v.draw_instance_predictions(outputs["instances"].to("cpu")) detected_objects = [] box_locations = outputs["instances"].pred_boxes box_loc_screen = box_locations.tensor.cpu().numpy() for i, box_coord in enumerate(box_loc_screen): x0, y0, x1, y1 = box_coord width = x1 - x0 height = y1 - y0 predicted_label = metadata.thing_classes[outputs["instances"].pred_classes[i]] detected_objects.append( { "prediction": predicted_label, "x": int(x0), "y": int(y0), "w": int(width), "h": int(height), } ) return Image.fromarray(np.uint8(out.get_image())).convert("RGB"), detected_objects title = "Detic" description = "Gradio demo for Detic: Detecting Twenty-thousand Classes using Image-level Supervision. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." article = "

Detecting Twenty-thousand Classes using Image-level Supervision | Github Repo

" examples = [["desk.jpg"]] gr.Interface( inference, inputs=gr.inputs.Image(type="filepath"), outputs=[ gr.outputs.Image(label="Visualization", type="pil"), gr.outputs.JSON(label="Detected Objects"), ], enable_queue=True, title=title, description=description, article=article, examples=examples, ).launch()