Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,9 @@ import json
|
|
4 |
import random
|
5 |
from datetime import datetime
|
6 |
import os
|
|
|
|
|
|
|
7 |
|
8 |
# Get access token from environment
|
9 |
access_token = os.environ.get("HUGGINGFACE_TOKEN")
|
@@ -13,7 +16,31 @@ class DatasetViewer:
|
|
13 |
self.dataset = None
|
14 |
self.dataset_size = 0
|
15 |
self.last_refresh_time = None
|
|
|
16 |
self.load_dataset()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
def load_dataset(self):
|
19 |
"""Load the complete dataset into memory"""
|
@@ -53,8 +80,11 @@ class DatasetViewer:
|
|
53 |
|
54 |
# Append the triple (post_info, source_image, edited_image)
|
55 |
results.append(markdown_text)
|
56 |
-
results
|
57 |
-
|
|
|
|
|
|
|
58 |
|
59 |
return tuple(results)
|
60 |
|
|
|
4 |
import random
|
5 |
from datetime import datetime
|
6 |
import os
|
7 |
+
from PIL import Image
|
8 |
+
import io
|
9 |
+
import numpy as np
|
10 |
|
11 |
# Get access token from environment
|
12 |
access_token = os.environ.get("HUGGINGFACE_TOKEN")
|
|
|
16 |
self.dataset = None
|
17 |
self.dataset_size = 0
|
18 |
self.last_refresh_time = None
|
19 |
+
self.max_display_size = (800, 600) # Maximum width and height for displayed images
|
20 |
self.load_dataset()
|
21 |
+
|
22 |
+
def resize_image(self, image):
|
23 |
+
"""Resize image keeping aspect ratio with a maximum size constraint"""
|
24 |
+
if isinstance(image, np.ndarray):
|
25 |
+
# Convert numpy array to PIL Image
|
26 |
+
image = Image.fromarray(image)
|
27 |
+
elif isinstance(image, bytes):
|
28 |
+
# Convert bytes to PIL Image
|
29 |
+
image = Image.open(io.BytesIO(image))
|
30 |
+
|
31 |
+
# Calculate scaling factor to fit within max dimensions
|
32 |
+
width_ratio = self.max_display_size[0] / image.width
|
33 |
+
height_ratio = self.max_display_size[1] / image.height
|
34 |
+
scale_factor = min(width_ratio, height_ratio)
|
35 |
+
|
36 |
+
# Only resize if image is larger than max dimensions
|
37 |
+
if scale_factor < 1:
|
38 |
+
new_width = int(image.width * scale_factor)
|
39 |
+
new_height = int(image.height * scale_factor)
|
40 |
+
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
41 |
+
|
42 |
+
# Convert back to numpy array for gradio
|
43 |
+
return np.array(image)
|
44 |
|
45 |
def load_dataset(self):
|
46 |
"""Load the complete dataset into memory"""
|
|
|
80 |
|
81 |
# Append the triple (post_info, source_image, edited_image)
|
82 |
results.append(markdown_text)
|
83 |
+
# Resize images before adding to results
|
84 |
+
source_image = self.resize_image(sample["source_image"])
|
85 |
+
edited_image = self.resize_image(sample["edited_image"])
|
86 |
+
results.append(source_image)
|
87 |
+
results.append(edited_image)
|
88 |
|
89 |
return tuple(results)
|
90 |
|