taham655 commited on
Commit
0ae7886
·
1 Parent(s): 6fffbf7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -26
app.py CHANGED
@@ -3,40 +3,34 @@ import os
3
  import soundfile as sf
4
  import torch
5
  from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
6
- # Assuming you have your .env file configured with necessary API keys or configurations
7
- # load_dotenv()
8
 
9
- # Initialize the model outside the main app function to load it only once
10
 
11
 
 
 
12
 
 
13
 
 
 
 
 
14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
  def transcribe_audio(audio_file):
17
- device = "cuda:0" if torch.cuda.is_available() else "cpu"
18
- torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
19
-
20
- model_id = "distil-whisper/distil-large-v2"
21
-
22
- model = AutoModelForSpeechSeq2Seq.from_pretrained(
23
- model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
24
- )
25
- model.to(device)
26
-
27
- processor = AutoProcessor.from_pretrained(model_id)
28
-
29
- pipe = pipeline(
30
- "automatic-speech-recognition",
31
- model=model,
32
- tokenizer=processor.tokenizer,
33
- feature_extractor=processor.feature_extractor,
34
- max_new_tokens=128,
35
- chunk_length_s=15,
36
- batch_size=16,
37
- torch_dtype=torch_dtype,
38
- device=device,
39
- )
40
  # Save the audio file to a temporary file
41
  with open("temp_audio_file", "wb") as f:
42
  f.write(audio_file.getbuffer())
 
3
  import soundfile as sf
4
  import torch
5
  from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
 
 
6
 
 
7
 
8
 
9
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
11
 
12
+ model_id = "distil-whisper/distil-large-v2"
13
 
14
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(
15
+ model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
16
+ )
17
+ model.to(device)
18
 
19
+ processor = AutoProcessor.from_pretrained(model_id)
20
+
21
+ pipe = pipeline(
22
+ "automatic-speech-recognition",
23
+ model=model,
24
+ tokenizer=processor.tokenizer,
25
+ feature_extractor=processor.feature_extractor,
26
+ max_new_tokens=128,
27
+ chunk_length_s=15,
28
+ batch_size=16,
29
+ torch_dtype=torch_dtype,
30
+ device=device,
31
+ )
32
 
33
  def transcribe_audio(audio_file):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  # Save the audio file to a temporary file
35
  with open("temp_audio_file", "wb") as f:
36
  f.write(audio_file.getbuffer())