|
import streamlit as st |
|
from datasets import load_dataset |
|
import pandas as pd |
|
from transformers import pipeline |
|
import time |
|
|
|
|
|
universities_url = "https://www.4icu.org/top-universities-world/" |
|
|
|
|
|
@st.cache_resource |
|
def load_datasets(): |
|
ds_jobs = load_dataset("lukebarousse/data_jobs") |
|
ds_courses = load_dataset("azrai99/coursera-course-dataset") |
|
ds_custom_courses = pd.read_csv("final_cleaned_merged_coursera_courses.csv") |
|
ds_custom_jobs = pd.read_csv("merged_data_science_jobs.csv") |
|
ds_custom_universities = pd.read_csv("merged_university_data_cleaned (1).csv") |
|
return ds_jobs, ds_courses, ds_custom_courses, ds_custom_jobs, ds_custom_universities |
|
|
|
ds_jobs, ds_courses, ds_custom_courses, ds_custom_jobs, ds_custom_universities = load_datasets() |
|
|
|
|
|
@st.cache_resource |
|
def load_pipeline(): |
|
return pipeline("text2text-generation", model="google/flan-t5-large") |
|
|
|
qa_pipeline = load_pipeline() |
|
|
|
|
|
st.title("Career Counseling Application") |
|
st.subheader("Build Your Profile and Discover Tailored Career Recommendations") |
|
|
|
|
|
st.sidebar.header("Profile Setup") |
|
educational_background = st.sidebar.text_input("Educational Background (e.g., Degree, Major)") |
|
interests = st.sidebar.text_input("Interests (e.g., AI, Data Science, Engineering)") |
|
tech_skills = st.sidebar.text_area("Technical Skills (e.g., Python, SQL, Machine Learning)") |
|
soft_skills = st.sidebar.text_area("Soft Skills (e.g., Communication, Teamwork)") |
|
|
|
|
|
if st.sidebar.button("Save Profile"): |
|
with st.spinner('Saving your profile...'): |
|
time.sleep(2) |
|
st.session_state.profile_data = { |
|
"educational_background": educational_background, |
|
"interests": interests, |
|
"tech_skills": tech_skills, |
|
"soft_skills": soft_skills |
|
} |
|
st.sidebar.success("Profile saved successfully!") |
|
|
|
|
|
st.header("Intelligent Q&A") |
|
question = st.text_input("Ask a career-related question:") |
|
if question: |
|
with st.spinner('Processing your question...'): |
|
answer = qa_pipeline(question)[0]["generated_text"] |
|
time.sleep(2) |
|
st.write("Answer:", answer) |
|
|
|
|
|
st.header("Job Recommendations") |
|
if "profile_data" in st.session_state: |
|
with st.spinner('Generating job recommendations...'): |
|
time.sleep(2) |
|
job_recommendations = [] |
|
|
|
|
|
for job in ds_jobs["train"]: |
|
job_title = job.get("job_title_short", "Unknown Job Title") |
|
job_skills = job.get("job_skills", "") or "" |
|
if any(skill.lower() in job_skills.lower() for skill in st.session_state.profile_data["tech_skills"].split(",")): |
|
job_recommendations.append(job_title) |
|
|
|
|
|
for _, job in ds_custom_jobs.iterrows(): |
|
job_title = job.get("job_title", "Unknown Job Title") |
|
job_skills = job.get("skills", "") or "" |
|
if any(skill.lower() in job_skills.lower() for skill in st.session_state.profile_data["tech_skills"].split(",")): |
|
job_recommendations.append(job_title) |
|
|
|
|
|
job_recommendations = list(set(job_recommendations)) |
|
|
|
if job_recommendations: |
|
st.subheader("Based on your profile, here are some potential job roles:") |
|
for job in job_recommendations[:5]: |
|
st.write("- ", job) |
|
else: |
|
st.write("No specific job recommendations found matching your profile. Here are some general recommendations:") |
|
for job in ["Data Analyst", "Software Engineer", "Project Manager", "Research Scientist", "Business Analyst"][:5]: |
|
st.write("- ", job) |
|
|
|
|
|
st.header("Recommended Courses") |
|
if "profile_data" in st.session_state: |
|
with st.spinner('Finding courses related to your profile...'): |
|
time.sleep(2) |
|
course_recommendations = [] |
|
|
|
|
|
for course in ds_courses["train"]: |
|
if any(interest.lower() in course.get("Course Name", "").lower() for interest in st.session_state.profile_data["interests"].split(",")): |
|
course_recommendations.append({ |
|
"name": course.get("Course Name", "Unknown Course Title"), |
|
"url": course.get("Links", "#") |
|
}) |
|
|
|
|
|
for _, row in ds_custom_courses.iterrows(): |
|
if any(interest.lower() in row["Course Name"].lower() for interest in st.session_state.profile_data["interests"].split(",")): |
|
course_recommendations.append({ |
|
"name": row["Course Name"], |
|
"url": row.get("Links", "#") |
|
}) |
|
|
|
|
|
course_recommendations = list({(course["name"], course["url"]) for course in course_recommendations}) |
|
|
|
|
|
if len(course_recommendations) < 5: |
|
for course in ds_courses["train"]: |
|
if len(course_recommendations) >= 5: |
|
break |
|
if any(skill.lower() in course.get("Course Name", "").lower() for skill in st.session_state.profile_data["tech_skills"].split(",")): |
|
course_recommendations.append((course.get("Course Name", "Unknown Course Title"), course.get("Links", "#"))) |
|
|
|
for _, row in ds_custom_courses.iterrows(): |
|
if len(course_recommendations) >= 5: |
|
break |
|
if any(skill.lower() in row["Course Name"].lower() for skill in st.session_state.profile_data["tech_skills"].split(",")): |
|
course_recommendations.append((row["Course Name"], row.get("Links", "#"))) |
|
|
|
|
|
course_recommendations = list({(name, url) for name, url in course_recommendations}) |
|
|
|
if course_recommendations: |
|
st.write("Here are the top 5 courses related to your interests:") |
|
for course in course_recommendations[:5]: |
|
st.write(f"- [{course[0]}]({course[1]})") |
|
|
|
|
|
st.header("Top Universities") |
|
st.write("For further education, you can explore the top universities worldwide:") |
|
st.write(f"[View Top Universities Rankings]({universities_url})") |
|
|
|
|
|
st.write("Thank you for using the Career Counseling Application!") |
|
''' |
|
|
|
with open('app.py', 'w') as f: |
|
f.write(code) |