DreamStream-1 commited on
Commit
3aa1ab2
Β·
verified Β·
1 Parent(s): 4a12880

Update app.py

Browse files

All The Features added for testing

Files changed (1) hide show
  1. app.py +159 -11
app.py CHANGED
@@ -8,6 +8,17 @@ import pickle
8
  import gradio as gr
9
  from nltk.tokenize import word_tokenize
10
  from nltk.stem.lancaster import LancasterStemmer
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  # Ensure necessary NLTK resources are downloaded
13
  nltk.download('punkt')
@@ -80,16 +91,153 @@ def chat(message, history):
80
  history.append((message, response))
81
  return history, history
82
 
83
- # Gradio interface
84
- chatbot = gr.Chatbot(label="Chat")
85
- demo = gr.Interface(
86
- chat,
87
- [gr.Textbox(lines=1, label="Message"), "state"],
88
- [chatbot, "state"],
89
- allow_flagging="never",
90
- title="Wellbeing for All, ** I am your Best Friend **",
91
- )
92
-
93
- # Launch Gradio interface
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
  if __name__ == "__main__":
 
 
 
 
 
 
 
 
 
 
95
  demo.launch()
 
8
  import gradio as gr
9
  from nltk.tokenize import word_tokenize
10
  from nltk.stem.lancaster import LancasterStemmer
11
+ import requests
12
+ import csv
13
+ import time
14
+ import re
15
+ from bs4 import BeautifulSoup
16
+ import pandas as pd
17
+ from selenium import webdriver
18
+ from selenium.webdriver.chrome.options import Options
19
+ import chromedriver_autoinstaller
20
+ import os
21
+ import logging
22
 
23
  # Ensure necessary NLTK resources are downloaded
24
  nltk.download('punkt')
 
91
  history.append((message, response))
92
  return history, history
93
 
94
+ # Load the pre-trained model (cached for performance)
95
+ def load_model():
96
+ return pipeline('sentiment-analysis', model='cardiffnlp/twitter-roberta-base-sentiment')
97
+
98
+ sentiment_model = load_model()
99
+
100
+ # Define the function to analyze sentiment
101
+ def analyze_sentiment(user_input):
102
+ result = sentiment_model(user_input)[0]
103
+ sentiment = result['label'].lower() # Convert to lowercase for easier comparison
104
+
105
+ # Customize messages based on detected sentiment
106
+ if sentiment == 'negative':
107
+ return "Mood Detected: Negative πŸ˜”\n\nStay positive! 🌟 Remember, tough times don't last, but tough people do!"
108
+ elif sentiment == 'neutral':
109
+ return "Mood Detected: Neutral 😐\n\nIt's good to reflect on steady days. Keep your goals in mind, and stay motivated!"
110
+ elif sentiment == 'positive':
111
+ return "Mood Detected: Positive 😊\n\nYou're on the right track! Keep shining! 🌞"
112
+ else:
113
+ return "Mood Detected: Unknown πŸ€”\n\nKeep going, you're doing great!"
114
+
115
+ # Load pre-trained model and tokenizer
116
+ @st.cache_resource
117
+ def load_model():
118
+ tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
119
+ model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
120
+ return tokenizer, model
121
+
122
+ tokenizer, model = load_model()
123
+
124
+ # Set page config as the very first Streamlit command
125
+ st.set_page_config(page_title="Mental Health & Wellness Assistant", layout="wide")
126
+
127
+ # Display header
128
+ st.title("Mental Health & Wellness Assistant")
129
+
130
+ # User input for text (emotion detection)
131
+ user_input = st.text_area("How are you feeling today?", "Enter your thoughts here...")
132
+
133
+ # Model prediction
134
+ if user_input:
135
+ pipe = pipeline("text-classification", model=model, tokenizer=tokenizer)
136
+ result = pipe(user_input)
137
+
138
+ # Extracting the emotion from the model's result
139
+ emotion = result[0]['label']
140
+
141
+ # Display emotion
142
+ st.write(f"**Emotion Detected:** {emotion}")
143
+
144
+ # Provide suggestions based on the detected emotion
145
+ if emotion == 'joy':
146
+ st.write("You're feeling happy! Keep up the great mood!")
147
+ st.write("Useful Resources:")
148
+ st.markdown("[Relaxation Techniques](https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation)")
149
+ st.write("[Dealing with Stress](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)")
150
+ st.write("[Emotional Wellness Toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)")
151
+
152
+ st.write("Relaxation Videos:")
153
+ st.markdown("[Watch on YouTube](https://youtu.be/m1vaUGtyo-A)")
154
+
155
+ elif emotion == 'anger':
156
+ st.write("You're feeling angry. It's okay to feel this way. Let's try to calm down.")
157
+ st.write("Useful Resources:")
158
+ st.markdown("[Emotional Wellness Toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)")
159
+ st.write("[Stress Management Tips](https://www.health.harvard.edu/health-a-to-z)")
160
+ st.write("[Dealing with Anger](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)")
161
+
162
+ st.write("Relaxation Videos:")
163
+ st.markdown("[Watch on YouTube](https://youtu.be/MIc299Flibs)")
164
+
165
+ elif emotion == 'fear':
166
+ st.write("You're feeling fearful. Take a moment to breathe and relax.")
167
+ st.write("Useful Resources:")
168
+ st.markdown("[Mindfulness Practices](https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation)")
169
+ st.write("[Coping with Anxiety](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)")
170
+ st.write("[Emotional Wellness Toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)")
171
+
172
+ st.write("Relaxation Videos:")
173
+ st.markdown("[Watch on YouTube](https://youtu.be/yGKKz185M5o)")
174
+
175
+ elif emotion == 'sadness':
176
+ st.write("You're feeling sad. It's okay to take a break.")
177
+ st.write("Useful Resources:")
178
+ st.markdown("[Emotional Wellness Toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)")
179
+ st.write("[Dealing with Anxiety](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)")
180
+
181
+ st.write("Relaxation Videos:")
182
+ st.markdown("[Watch on YouTube](https://youtu.be/-e-4Kx5px_I)")
183
+
184
+ elif emotion == 'surprise':
185
+ st.write("You're feeling surprised. It's okay to feel neutral!")
186
+ st.write("Useful Resources:")
187
+ st.markdown("[Managing Stress](https://www.health.harvard.edu/health-a-to-z)")
188
+ st.write("[Coping Strategies](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)")
189
+
190
+ st.write("Relaxation Videos:")
191
+ st.markdown("[Watch on YouTube](https://youtu.be/m1vaUGtyo-A)")
192
+
193
+ # Chatbot functionality
194
+ def chatbot_interface():
195
+ def chat(message, history):
196
+ history = history or []
197
+ message = message.lower()
198
+
199
+ try:
200
+ # Predict the tag
201
+ results = model.predict([bag_of_words(message, words)])
202
+ results_index = np.argmax(results)
203
+ tag = labels[results_index]
204
+
205
+ # Match tag with intent and choose a random response
206
+ for tg in data["intents"]:
207
+ if tg['tag'] == tag:
208
+ responses = tg['responses']
209
+ response = random.choice(responses)
210
+ break
211
+ else:
212
+ response = "I'm sorry, I didn't understand that. Could you please rephrase?"
213
+
214
+ except Exception as e:
215
+ response = f"An error occurred: {str(e)}"
216
+
217
+ history.append((message, response))
218
+ return history, history
219
+
220
+ chatbot = gr.Chatbot(label="Chat")
221
+ demo = gr.Interface(
222
+ chat,
223
+ [gr.Textbox(lines=1, label="Message"), "state"],
224
+ [chatbot, "state"],
225
+ allow_flagging="never",
226
+ title="Mental Health Chatbot",
227
+ description="Your personal mental health assistant.",
228
+ )
229
+ return demo
230
+
231
+ # Launch the interfaces
232
  if __name__ == "__main__":
233
+ # Create a tabbed interface for different features
234
+ tabs = [
235
+ gr.TabItem("Sentiment Analysis", chatbot_ui()),
236
+ gr.TabItem("Emotion Detection", chatbot_ui()),
237
+ gr.TabItem("Google Places Search", chatbot_ui()),
238
+ ]
239
+
240
+ with gr.Blocks() as demo:
241
+ gr.Tabs(tabs)
242
+
243
  demo.launch()