tahirsher commited on
Commit
b102079
·
verified ·
1 Parent(s): 52edd0b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +73 -84
app.py CHANGED
@@ -1,24 +1,78 @@
1
  import nltk
2
- nltk.download('punkt')
3
- from nltk.stem.lancaster import LancasterStemmer
4
  import numpy as np
5
  import tflearn
6
- import tensorflow
7
  import random
8
  import json
9
- import pandas as pd
10
  import pickle
11
  import gradio as gr
12
- from tensorflow.python.util.nest import is_sequence_or_composite
13
 
 
 
14
  stemmer = LancasterStemmer()
15
 
16
- with open("intents.json") as file:
17
- data = json.load(file)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
- with open("data.pickle", "rb") as f:
20
- words, labels, training, output = pickle.load(f)
 
 
 
21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  net = tflearn.input_data(shape=[None, len(training[0])])
23
  net = tflearn.fully_connected(net, 8)
24
  net = tflearn.fully_connected(net, 8)
@@ -26,47 +80,35 @@ net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
26
  net = tflearn.regression(net)
27
 
28
  model = tflearn.DNN(net)
29
- model.load("MentalHealthChatBotmodel.tflearn")
30
- # print('model loaded successfully')
31
-
 
32
 
 
33
  def bag_of_words(s, words):
34
  bag = [0 for _ in range(len(words))]
35
  s_words = nltk.word_tokenize(s)
36
- print("Tokenized words:", s_words) # Debugging
37
  s_words = [stemmer.stem(word.lower()) for word in s_words]
38
- print("Stemmed words:", s_words) # Debugging
39
 
40
  for se in s_words:
41
  for i, w in enumerate(words):
42
  if w == se:
43
  bag[i] = 1
44
-
45
- if not any(bag): # Check if bag is all zeros
46
- print("Warning: No matching words found in vocabulary.")
47
  return np.array(bag)
48
 
49
-
50
  def chat(message, history=None):
51
  history = history or []
52
  message = message.lower()
53
 
54
  try:
55
- print("User message:", message) # Debugging
56
  bag = bag_of_words(message, words)
57
- print("Bag representation:", bag) # Debugging
58
  results = model.predict([bag])
59
- print("Prediction results:", results) # Debugging
60
-
61
- if not results.any(): # Handle empty or invalid predictions
62
- raise ValueError("Model returned no valid predictions.")
63
-
64
  results_index = np.argmax(results)
65
  tag = labels[results_index]
66
- print("Predicted tag:", tag) # Debugging
67
-
68
  except Exception as e:
69
- print(f"Error during processing: {e}") # Log the error
70
  response = "I'm sorry, I couldn't understand your message."
71
  history.append((message, response))
72
  return history, history
@@ -82,70 +124,17 @@ def chat(message, history=None):
82
  history.append((message, response))
83
  return history, history
84
 
85
- chatbot = gr.Chatbot(label="Chat")
86
  css = """
87
  footer {display:none !important}
88
- .output-markdown{display:none !important}
89
- .gr-button-primary {
90
- z-index: 14;
91
- height: 43px;
92
- width: 130px;
93
- left: 0px;
94
- top: 0px;
95
- padding: 0px;
96
- cursor: pointer !important;
97
- background: none rgb(17, 20, 45) !important;
98
- border: none !important;
99
- text-align: center !important;
100
- font-family: Poppins !important;
101
- font-size: 14px !important;
102
- font-weight: 500 !important;
103
- color: rgb(255, 255, 255) !important;
104
- line-height: 1 !important;
105
- border-radius: 12px !important;
106
- transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
107
- box-shadow: none !important;
108
- }
109
- .gr-button-primary:hover{
110
- z-index: 14;
111
- height: 43px;
112
- width: 130px;
113
- left: 0px;
114
- top: 0px;
115
- padding: 0px;
116
- cursor: pointer !important;
117
- background: none rgb(37, 56, 133) !important;
118
- border: none !important;
119
- text-align: center !important;
120
- font-family: Poppins !important;
121
- font-size: 14px !important;
122
- font-weight: 500 !important;
123
- color: rgb(255, 255, 255) !important;
124
- line-height: 1 !important;
125
- border-radius: 12px !important;
126
- transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
127
- box-shadow: rgb(0 0 0 / 23%) 0px 1px 7px 0px !important;
128
- }
129
- .hover\:bg-orange-50:hover {
130
- --tw-bg-opacity: 1 !important;
131
- background-color: rgb(229,225,255) !important;
132
- }
133
-
134
- div[data-testid="user"] {
135
- background-color: #253885 !important;
136
- }
137
-
138
- .h-\[40vh\]{
139
- height: 70vh !important;
140
- }
141
-
142
  """
143
  demo = gr.Interface(
144
  fn=chat,
145
  inputs=[gr.Textbox(lines=1, label="Message"), gr.State([])],
146
  outputs=[gr.Chatbot(label="Chat"), gr.State()],
147
  allow_flagging="never",
148
- title="Wellbeing for All | Generative AI Enthusiasts",
149
  css=css
150
  )
151
 
 
1
  import nltk
 
 
2
  import numpy as np
3
  import tflearn
4
+ import tensorflow as tf
5
  import random
6
  import json
 
7
  import pickle
8
  import gradio as gr
9
+ from nltk.stem.lancaster import LancasterStemmer
10
 
11
+ # Ensure nltk downloads
12
+ nltk.download('punkt')
13
  stemmer = LancasterStemmer()
14
 
15
+ # Load intents and check for errors
16
+ try:
17
+ with open("intents.json") as file:
18
+ data = json.load(file)
19
+ except FileNotFoundError:
20
+ raise FileNotFoundError("The file 'intents.json' was not found.")
21
+
22
+ # Load or regenerate the data
23
+ try:
24
+ with open("data.pickle", "rb") as f:
25
+ words, labels, training, output = pickle.load(f)
26
+ except FileNotFoundError:
27
+ # Regenerate the data.pickle if not found
28
+ words = []
29
+ labels = []
30
+ docs_x = []
31
+ docs_y = []
32
+
33
+ for intent in data["intents"]:
34
+ for pattern in intent["patterns"]:
35
+ wrds = nltk.word_tokenize(pattern)
36
+ words.extend(wrds)
37
+ docs_x.append(wrds)
38
+ docs_y.append(intent["tag"])
39
+
40
+ if intent["tag"] not in labels:
41
+ labels.append(intent["tag"])
42
+
43
+ words = [stemmer.stem(w.lower()) for w in words if w not in ["?", "!", ".", ","]]
44
+ words = sorted(list(set(words)))
45
+ labels = sorted(labels)
46
+
47
+ training = []
48
+ output = []
49
+
50
+ out_empty = [0 for _ in range(len(labels))]
51
+
52
+ for x, doc in enumerate(docs_x):
53
+ bag = []
54
+
55
+ wrds = [stemmer.stem(w.lower()) for w in doc]
56
 
57
+ for w in words:
58
+ if w in wrds:
59
+ bag.append(1)
60
+ else:
61
+ bag.append(0)
62
 
63
+ output_row = out_empty[:]
64
+ output_row[labels.index(docs_y[x])] = 1
65
+
66
+ training.append(bag)
67
+ output.append(output_row)
68
+
69
+ training = np.array(training)
70
+ output = np.array(output)
71
+
72
+ with open("data.pickle", "wb") as f:
73
+ pickle.dump((words, labels, training, output), f)
74
+
75
+ # Build the model
76
  net = tflearn.input_data(shape=[None, len(training[0])])
77
  net = tflearn.fully_connected(net, 8)
78
  net = tflearn.fully_connected(net, 8)
 
80
  net = tflearn.regression(net)
81
 
82
  model = tflearn.DNN(net)
83
+ try:
84
+ model.load("MentalHealthChatBotmodel.tflearn")
85
+ except Exception as e:
86
+ raise FileNotFoundError("Model file 'MentalHealthChatBotmodel.tflearn' could not be loaded.") from e
87
 
88
+ # Function to convert user input into a bag-of-words representation
89
  def bag_of_words(s, words):
90
  bag = [0 for _ in range(len(words))]
91
  s_words = nltk.word_tokenize(s)
 
92
  s_words = [stemmer.stem(word.lower()) for word in s_words]
 
93
 
94
  for se in s_words:
95
  for i, w in enumerate(words):
96
  if w == se:
97
  bag[i] = 1
 
 
 
98
  return np.array(bag)
99
 
100
+ # Chat function
101
  def chat(message, history=None):
102
  history = history or []
103
  message = message.lower()
104
 
105
  try:
 
106
  bag = bag_of_words(message, words)
 
107
  results = model.predict([bag])
 
 
 
 
 
108
  results_index = np.argmax(results)
109
  tag = labels[results_index]
 
 
110
  except Exception as e:
111
+ print(f"Error during processing: {e}") # Debugging
112
  response = "I'm sorry, I couldn't understand your message."
113
  history.append((message, response))
114
  return history, history
 
124
  history.append((message, response))
125
  return history, history
126
 
127
+ # Gradio Interface
128
  css = """
129
  footer {display:none !important}
130
+ div[data-testid="user"] {background-color: #253885 !important;}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131
  """
132
  demo = gr.Interface(
133
  fn=chat,
134
  inputs=[gr.Textbox(lines=1, label="Message"), gr.State([])],
135
  outputs=[gr.Chatbot(label="Chat"), gr.State()],
136
  allow_flagging="never",
137
+ title="Wellbeing Chatbot",
138
  css=css
139
  )
140