Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,4 @@
|
|
1 |
import nltk
|
2 |
-
nltk.download('punkt')
|
3 |
-
from nltk.stem.lancaster import LancasterStemmer
|
4 |
import numpy as np
|
5 |
import tflearn
|
6 |
import tensorflow
|
@@ -9,12 +7,10 @@ import json
|
|
9 |
import pickle
|
10 |
import gradio as gr
|
11 |
from nltk.tokenize import word_tokenize
|
|
|
12 |
|
13 |
# Ensure necessary NLTK resources are downloaded
|
14 |
-
|
15 |
-
nltk.data.find('tokenizers/punkt')
|
16 |
-
except LookupError:
|
17 |
-
nltk.download('punkt')
|
18 |
|
19 |
# Initialize the stemmer
|
20 |
stemmer = LancasterStemmer()
|
@@ -45,12 +41,12 @@ model = tflearn.DNN(net)
|
|
45 |
try:
|
46 |
model.load("MentalHealthChatBotmodel.tflearn")
|
47 |
except FileNotFoundError:
|
48 |
-
|
49 |
|
50 |
# Function to process user input into a bag-of-words format
|
51 |
def bag_of_words(s, words):
|
52 |
bag = [0 for _ in range(len(words))]
|
53 |
-
s_words = word_tokenize(s)
|
54 |
s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
|
55 |
for se in s_words:
|
56 |
for i, w in enumerate(words):
|
@@ -86,67 +82,12 @@ def chat(message, history):
|
|
86 |
|
87 |
# Gradio interface
|
88 |
chatbot = gr.Chatbot(label="Chat")
|
89 |
-
css = """
|
90 |
-
footer {display:none !important}
|
91 |
-
.output-markdown{display:none !important}
|
92 |
-
.gr-button-primary {
|
93 |
-
z-index: 14;
|
94 |
-
height: 43px;
|
95 |
-
width: 130px;
|
96 |
-
left: 0px;
|
97 |
-
top: 0px;
|
98 |
-
padding: 0px;
|
99 |
-
cursor: pointer !important;
|
100 |
-
background: none rgb(17, 20, 45) !important;
|
101 |
-
border: none !important;
|
102 |
-
text-align: center !important;
|
103 |
-
font-family: Poppins !important;
|
104 |
-
font-size: 14px !important;
|
105 |
-
font-weight: 500 !important;
|
106 |
-
color: rgb(255, 255, 255) !important;
|
107 |
-
line-height: 1 !important;
|
108 |
-
border-radius: 12px !important;
|
109 |
-
transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
|
110 |
-
box-shadow: none !important;
|
111 |
-
}
|
112 |
-
.gr-button-primary:hover{
|
113 |
-
z-index: 14;
|
114 |
-
height: 43px;
|
115 |
-
width: 130px;
|
116 |
-
left: 0px;
|
117 |
-
top: 0px;
|
118 |
-
padding: 0px;
|
119 |
-
cursor: pointer !important;
|
120 |
-
background: none rgb(37, 56, 133) !important;
|
121 |
-
border: none !important;
|
122 |
-
text-align: center !important;
|
123 |
-
font-family: Poppins !important;
|
124 |
-
font-size: 14px !important;
|
125 |
-
font-weight: 500 !important;
|
126 |
-
color: rgb(255, 255, 255) !important;
|
127 |
-
line-height: 1 !important;
|
128 |
-
border-radius: 12px !important;
|
129 |
-
transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
|
130 |
-
box-shadow: rgb(0 0 0 / 23%) 0px 1px 7px 0px !important;
|
131 |
-
}
|
132 |
-
.hover\:bg-orange-50:hover {
|
133 |
-
--tw-bg-opacity: 1 !important;
|
134 |
-
background-color: rgb(229,225,255) !important;
|
135 |
-
}
|
136 |
-
div[data-testid="user"] {
|
137 |
-
background-color: #253885 !important;
|
138 |
-
}
|
139 |
-
.h-\[40vh\]{
|
140 |
-
height: 70vh !important;
|
141 |
-
}
|
142 |
-
"""
|
143 |
demo = gr.Interface(
|
144 |
chat,
|
145 |
[gr.Textbox(lines=1, label="Message"), "state"],
|
146 |
[chatbot, "state"],
|
147 |
allow_flagging="never",
|
148 |
-
title="
|
149 |
-
css=css
|
150 |
)
|
151 |
|
152 |
# Launch Gradio interface
|
|
|
1 |
import nltk
|
|
|
|
|
2 |
import numpy as np
|
3 |
import tflearn
|
4 |
import tensorflow
|
|
|
7 |
import pickle
|
8 |
import gradio as gr
|
9 |
from nltk.tokenize import word_tokenize
|
10 |
+
from nltk.stem.lancaster import LancasterStemmer
|
11 |
|
12 |
# Ensure necessary NLTK resources are downloaded
|
13 |
+
nltk.download('punkt')
|
|
|
|
|
|
|
14 |
|
15 |
# Initialize the stemmer
|
16 |
stemmer = LancasterStemmer()
|
|
|
41 |
try:
|
42 |
model.load("MentalHealthChatBotmodel.tflearn")
|
43 |
except FileNotFoundError:
|
44 |
+
raise FileNotFoundError("Error: Trained model file 'MentalHealthChatBotmodel.tflearn' not found.")
|
45 |
|
46 |
# Function to process user input into a bag-of-words format
|
47 |
def bag_of_words(s, words):
|
48 |
bag = [0 for _ in range(len(words))]
|
49 |
+
s_words = word_tokenize(s)
|
50 |
s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
|
51 |
for se in s_words:
|
52 |
for i, w in enumerate(words):
|
|
|
82 |
|
83 |
# Gradio interface
|
84 |
chatbot = gr.Chatbot(label="Chat")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
demo = gr.Interface(
|
86 |
chat,
|
87 |
[gr.Textbox(lines=1, label="Message"), "state"],
|
88 |
[chatbot, "state"],
|
89 |
allow_flagging="never",
|
90 |
+
title="Wellbeing for All, ** I am your Best Friend **",
|
|
|
91 |
)
|
92 |
|
93 |
# Launch Gradio interface
|