taka-yamakoshi
test
56432ff
raw
history blame
4.84 kB
import numpy as np
import pandas as pd
import time
import streamlit as st
import matplotlib.pyplot as plt
import seaborn as sns
import jax
import jax.numpy as jnp
import torch
import torch.nn.functional as F
from transformers import AlbertTokenizer, AlbertForMaskedLM
#from custom_modeling_albert_flax import CustomFlaxAlbertForMaskedLM
from skeleton_modeling_albert import SkeletonAlbertForMaskedLM
def wide_setup():
max_width = 1500
padding_top = 0
padding_right = 2
padding_bottom = 0
padding_left = 2
define_margins = f"""
<style>
.appview-container .main .block-container{{
max-width: {max_width}px;
padding-top: {padding_top}rem;
padding-right: {padding_right}rem;
padding-left: {padding_left}rem;
padding-bottom: {padding_bottom}rem;
}}
</style>
"""
hide_table_row_index = """
<style>
tbody th {display:none}
.blank {display:none}
</style>
"""
st.markdown(define_margins, unsafe_allow_html=True)
st.markdown(hide_table_row_index, unsafe_allow_html=True)
def load_css(file_name):
with open(file_name) as f:
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
@st.cache(show_spinner=True,allow_output_mutation=True)
def load_model():
tokenizer = AlbertTokenizer.from_pretrained('albert-xxlarge-v2')
#model = CustomFlaxAlbertForMaskedLM.from_pretrained('albert-xxlarge-v2',from_pt=True)
model = AlbertForMaskedLM.from_pretrained('albert-xxlarge-v2')
return tokenizer,model
def clear_data():
for key in st.session_state:
del st.session_state[key]
if __name__=='__main__':
wide_setup()
load_css('style.css')
tokenizer,model = load_model()
mask_id = tokenizer('[MASK]').input_ids[1:-1][0]
main_area = st.empty()
if 'page_status' not in st.session_state:
st.session_state['page_status'] = 'type_in'
if st.session_state['page_status']=='type_in':
with main_area.container():
st.write('1. Type in the sentences and click "Tokenize"')
sent_1 = st.text_input('Sentence 1',value='It is better to play a prank on Samuel than Craig because he gets angry less often.')
sent_2 = st.text_input('Sentence 2',value='It is better to play a prank on Samuel than Craig because he gets angry more often.')
if st.button('Tokenize'):
st.session_state['page_status'] = 'tokenized'
st.session_state['sent_1'] = sent_1
st.session_state['sent_2'] = sent_2
main_area.empty()
if st.session_state['page_status']=='tokenized':
with main_area.container():
sent_1 = st.session_state['sent_1']
sent_2 = st.session_state['sent_2']
if 'masked_pos_1' not in st.session_state:
st.session_state['masked_pos_1'] = []
if 'masked_pos_2' not in st.session_state:
st.session_state['masked_pos_2'] = []
st.write('2. Select sites to mask out and click "Confirm"')
input_sent = tokenizer(sent_1).input_ids
decoded_sent = [tokenizer.decode([token]) for token in input_sent[1:-1]]
char_nums = [len(word)+2 for word in decoded_sent]
cols = st.columns(char_nums)
for word_id,(col,word) in enumerate(zip(cols,decoded_sent)):
with col:
if st.button(word,key=f'word_{word_id}'):
if word_id not in st.session_state['masked_pos_1']:
st.session_state['masked_pos_1'].append(word_id)
else:
st.session_state['masked_pos_1'].remove(word_id)
st.write(f'Masked words: {", ".join([decoded_sent[word_id] for word_id in np.sort(st.session_state["masked_pos_1"])])}')
if st.session_state['page_status']=='analysis':
sent_1 = st.sidebar.text_input('Sentence 1',value='It is better to play a prank on Samuel than Craig because he gets angry less often.',on_change=clear_data)
sent_2 = st.sidebar.text_input('Sentence 2',value='It is better to play a prank on Samuel than Craig because he gets angry more often.',on_change=clear_data)
input_ids_1 = tokenizer(sent_1).input_ids
input_ids_2 = tokenizer(sent_2).input_ids
input_ids = torch.tensor([input_ids_1,input_ids_2])
outputs = SkeletonAlbertForMaskedLM(model,input_ids,interventions = {0:{'lay':[(8,1,[0,1])]}})
logprobs = F.log_softmax(outputs['logits'], dim = -1)
preds = [torch.multinomial(torch.exp(probs), num_samples=1).squeeze(dim=-1) for probs in logprobs[0]]
st.write([tokenizer.decode([token]) for token in preds])