taka-yamakoshi
commited on
Commit
•
c2e2449
1
Parent(s):
450ed9d
remove flax
Browse files- custom_modeling_albert_flax.py +0 -493
custom_modeling_albert_flax.py
DELETED
@@ -1,493 +0,0 @@
|
|
1 |
-
from typing import Callable, Optional, Tuple
|
2 |
-
from copy import deepcopy
|
3 |
-
|
4 |
-
import numpy as np
|
5 |
-
|
6 |
-
import flax
|
7 |
-
import flax.linen as nn
|
8 |
-
import jax
|
9 |
-
import jax.numpy as jnp
|
10 |
-
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
|
11 |
-
from flax.linen.attention import dot_product_attention_weights
|
12 |
-
from flax.traverse_util import flatten_dict, unflatten_dict
|
13 |
-
from jax import lax
|
14 |
-
|
15 |
-
from transformers import AlbertConfig
|
16 |
-
from transformers.models.albert.modeling_flax_albert import FlaxAlbertOnlyMLMHead, FlaxAlbertEmbeddings, FlaxAlbertPreTrainedModel
|
17 |
-
from transformers.modeling_flax_outputs import (
|
18 |
-
FlaxBaseModelOutput,
|
19 |
-
FlaxBaseModelOutputWithPooling,
|
20 |
-
FlaxMaskedLMOutput,
|
21 |
-
FlaxMultipleChoiceModelOutput,
|
22 |
-
FlaxQuestionAnsweringModelOutput,
|
23 |
-
FlaxSequenceClassifierOutput,
|
24 |
-
FlaxTokenClassifierOutput,
|
25 |
-
)
|
26 |
-
from transformers.utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
27 |
-
|
28 |
-
from transformers.modeling_flax_utils import (
|
29 |
-
ACT2FN,
|
30 |
-
FlaxPreTrainedModel,
|
31 |
-
append_call_sample_docstring,
|
32 |
-
append_replace_return_docstrings,
|
33 |
-
overwrite_call_docstring,
|
34 |
-
)
|
35 |
-
|
36 |
-
class CustomFlaxAlbertSelfAttention(nn.Module):
|
37 |
-
config: AlbertConfig
|
38 |
-
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
39 |
-
|
40 |
-
def setup(self):
|
41 |
-
if self.config.hidden_size % self.config.num_attention_heads != 0:
|
42 |
-
raise ValueError(
|
43 |
-
"`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` "
|
44 |
-
" : {self.config.num_attention_heads}"
|
45 |
-
)
|
46 |
-
|
47 |
-
self.query = nn.Dense(
|
48 |
-
self.config.hidden_size,
|
49 |
-
dtype=self.dtype,
|
50 |
-
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
51 |
-
)
|
52 |
-
self.key = nn.Dense(
|
53 |
-
self.config.hidden_size,
|
54 |
-
dtype=self.dtype,
|
55 |
-
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
56 |
-
)
|
57 |
-
self.value = nn.Dense(
|
58 |
-
self.config.hidden_size,
|
59 |
-
dtype=self.dtype,
|
60 |
-
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
61 |
-
)
|
62 |
-
self.dense = nn.Dense(
|
63 |
-
self.config.hidden_size,
|
64 |
-
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
65 |
-
dtype=self.dtype,
|
66 |
-
)
|
67 |
-
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
|
68 |
-
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
|
69 |
-
|
70 |
-
def __call__(
|
71 |
-
self,
|
72 |
-
hidden_states,
|
73 |
-
attention_mask,
|
74 |
-
deterministic=True,
|
75 |
-
output_attentions: bool = False,
|
76 |
-
layer_id: int = None,
|
77 |
-
interv_type: str = "swap",
|
78 |
-
interv_dict: dict = {},
|
79 |
-
):
|
80 |
-
head_dim = self.config.hidden_size // self.config.num_attention_heads
|
81 |
-
|
82 |
-
query_states = self.query(hidden_states).reshape(
|
83 |
-
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
|
84 |
-
)
|
85 |
-
value_states = self.value(hidden_states).reshape(
|
86 |
-
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
|
87 |
-
)
|
88 |
-
key_states = self.key(hidden_states).reshape(
|
89 |
-
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
|
90 |
-
)
|
91 |
-
|
92 |
-
reps = {
|
93 |
-
'lay': hidden_states,
|
94 |
-
'qry': query_states,
|
95 |
-
'key': key_states,
|
96 |
-
'val': value_states,
|
97 |
-
}
|
98 |
-
if layer_id in interv_dict:
|
99 |
-
interv = interv_dict[layer_id]
|
100 |
-
for rep_name in ['lay','qry','key','val']:
|
101 |
-
if rep_name in interv:
|
102 |
-
new_state = deepcopy(reps[rep_name])
|
103 |
-
for head_id, pos, swap_ids in interv[rep_name]:
|
104 |
-
new_state[swap_ids[0],pos,head_id] = reps[rep_name][swap_ids[1],pos,head_id]
|
105 |
-
new_state[swap_ids[1],pos,head_id] = reps[rep_name][swap_ids[0],pos,head_id]
|
106 |
-
reps[rep_name] = deepcopy(new_state)
|
107 |
-
|
108 |
-
hidden_states = deepcopy(reps['lay'])
|
109 |
-
query_states = deepcopy(reps['qry'])
|
110 |
-
key_states = deepcopy(reps['key'])
|
111 |
-
value_states = deepcopy(reps['val'])
|
112 |
-
|
113 |
-
# Convert the boolean attention mask to an attention bias.
|
114 |
-
if attention_mask is not None:
|
115 |
-
# attention mask in the form of attention bias
|
116 |
-
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
|
117 |
-
attention_bias = lax.select(
|
118 |
-
attention_mask > 0,
|
119 |
-
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
|
120 |
-
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
|
121 |
-
)
|
122 |
-
else:
|
123 |
-
attention_bias = None
|
124 |
-
|
125 |
-
dropout_rng = None
|
126 |
-
if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
|
127 |
-
dropout_rng = self.make_rng("dropout")
|
128 |
-
|
129 |
-
attn_weights = dot_product_attention_weights(
|
130 |
-
query_states,
|
131 |
-
key_states,
|
132 |
-
bias=attention_bias,
|
133 |
-
dropout_rng=dropout_rng,
|
134 |
-
dropout_rate=self.config.attention_probs_dropout_prob,
|
135 |
-
broadcast_dropout=True,
|
136 |
-
deterministic=deterministic,
|
137 |
-
dtype=self.dtype,
|
138 |
-
precision=None,
|
139 |
-
)
|
140 |
-
|
141 |
-
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
|
142 |
-
attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))
|
143 |
-
|
144 |
-
projected_attn_output = self.dense(attn_output)
|
145 |
-
projected_attn_output = self.dropout(projected_attn_output, deterministic=deterministic)
|
146 |
-
layernormed_attn_output = self.LayerNorm(projected_attn_output + hidden_states)
|
147 |
-
outputs = (layernormed_attn_output, attn_weights) if output_attentions else (layernormed_attn_output,)
|
148 |
-
return outputs
|
149 |
-
|
150 |
-
class CustomFlaxAlbertLayer(nn.Module):
|
151 |
-
config: AlbertConfig
|
152 |
-
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
153 |
-
|
154 |
-
def setup(self):
|
155 |
-
self.attention = CustomFlaxAlbertSelfAttention(self.config, dtype=self.dtype)
|
156 |
-
self.ffn = nn.Dense(
|
157 |
-
self.config.intermediate_size,
|
158 |
-
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
159 |
-
dtype=self.dtype,
|
160 |
-
)
|
161 |
-
self.activation = ACT2FN[self.config.hidden_act]
|
162 |
-
self.ffn_output = nn.Dense(
|
163 |
-
self.config.hidden_size,
|
164 |
-
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
165 |
-
dtype=self.dtype,
|
166 |
-
)
|
167 |
-
self.full_layer_layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
|
168 |
-
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
|
169 |
-
|
170 |
-
def __call__(
|
171 |
-
self,
|
172 |
-
hidden_states,
|
173 |
-
attention_mask,
|
174 |
-
deterministic: bool = True,
|
175 |
-
output_attentions: bool = False,
|
176 |
-
layer_id: int = None,
|
177 |
-
interv_type: str = "swap",
|
178 |
-
interv_dict: dict = {},
|
179 |
-
):
|
180 |
-
attention_outputs = self.attention(
|
181 |
-
hidden_states,
|
182 |
-
attention_mask,
|
183 |
-
deterministic=deterministic,
|
184 |
-
output_attentions=output_attentions,
|
185 |
-
layer_id=layer_id,
|
186 |
-
interv_type=interv_type,
|
187 |
-
interv_dict=interv_dict,
|
188 |
-
)
|
189 |
-
attention_output = attention_outputs[0]
|
190 |
-
ffn_output = self.ffn(attention_output)
|
191 |
-
ffn_output = self.activation(ffn_output)
|
192 |
-
ffn_output = self.ffn_output(ffn_output)
|
193 |
-
ffn_output = self.dropout(ffn_output, deterministic=deterministic)
|
194 |
-
hidden_states = self.full_layer_layer_norm(ffn_output + attention_output)
|
195 |
-
|
196 |
-
outputs = (hidden_states,)
|
197 |
-
|
198 |
-
if output_attentions:
|
199 |
-
outputs += (attention_outputs[1],)
|
200 |
-
return outputs
|
201 |
-
|
202 |
-
class CustomFlaxAlbertLayerCollection(nn.Module):
|
203 |
-
config: AlbertConfig
|
204 |
-
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
205 |
-
|
206 |
-
def setup(self):
|
207 |
-
self.layers = [
|
208 |
-
CustomFlaxAlbertLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.inner_group_num)
|
209 |
-
]
|
210 |
-
|
211 |
-
def __call__(
|
212 |
-
self,
|
213 |
-
hidden_states,
|
214 |
-
attention_mask,
|
215 |
-
deterministic: bool = True,
|
216 |
-
output_attentions: bool = False,
|
217 |
-
output_hidden_states: bool = False,
|
218 |
-
layer_id: int = None,
|
219 |
-
interv_type: str = "swap",
|
220 |
-
interv_dict: dict = {},
|
221 |
-
):
|
222 |
-
layer_hidden_states = ()
|
223 |
-
layer_attentions = ()
|
224 |
-
|
225 |
-
for layer_index, albert_layer in enumerate(self.layers):
|
226 |
-
layer_output = albert_layer(
|
227 |
-
hidden_states,
|
228 |
-
attention_mask,
|
229 |
-
deterministic=deterministic,
|
230 |
-
output_attentions=output_attentions,
|
231 |
-
layer_id=layer_id,
|
232 |
-
interv_type=interv_type,
|
233 |
-
interv_dict=interv_dict,
|
234 |
-
)
|
235 |
-
hidden_states = layer_output[0]
|
236 |
-
|
237 |
-
if output_attentions:
|
238 |
-
layer_attentions = layer_attentions + (layer_output[1],)
|
239 |
-
|
240 |
-
if output_hidden_states:
|
241 |
-
layer_hidden_states = layer_hidden_states + (hidden_states,)
|
242 |
-
|
243 |
-
outputs = (hidden_states,)
|
244 |
-
if output_hidden_states:
|
245 |
-
outputs = outputs + (layer_hidden_states,)
|
246 |
-
if output_attentions:
|
247 |
-
outputs = outputs + (layer_attentions,)
|
248 |
-
return outputs # last-layer hidden state, (layer hidden states), (layer attentions)
|
249 |
-
|
250 |
-
class CustomFlaxAlbertLayerCollections(nn.Module):
|
251 |
-
config: AlbertConfig
|
252 |
-
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
253 |
-
layer_index: Optional[str] = None
|
254 |
-
|
255 |
-
def setup(self):
|
256 |
-
self.albert_layers = CustomFlaxAlbertLayerCollection(self.config, dtype=self.dtype)
|
257 |
-
|
258 |
-
def __call__(
|
259 |
-
self,
|
260 |
-
hidden_states,
|
261 |
-
attention_mask,
|
262 |
-
deterministic: bool = True,
|
263 |
-
output_attentions: bool = False,
|
264 |
-
output_hidden_states: bool = False,
|
265 |
-
layer_id: int = None,
|
266 |
-
interv_type: str = "swap",
|
267 |
-
interv_dict: dict = {},
|
268 |
-
):
|
269 |
-
outputs = self.albert_layers(
|
270 |
-
hidden_states,
|
271 |
-
attention_mask,
|
272 |
-
deterministic=deterministic,
|
273 |
-
output_attentions=output_attentions,
|
274 |
-
output_hidden_states=output_hidden_states,
|
275 |
-
layer_id=layer_id,
|
276 |
-
interv_type=interv_type,
|
277 |
-
interv_dict=interv_dict,
|
278 |
-
)
|
279 |
-
return outputs
|
280 |
-
|
281 |
-
class CustomFlaxAlbertLayerGroups(nn.Module):
|
282 |
-
config: AlbertConfig
|
283 |
-
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
284 |
-
|
285 |
-
def setup(self):
|
286 |
-
self.layers = [
|
287 |
-
CustomFlaxAlbertLayerCollections(self.config, name=str(i), layer_index=str(i), dtype=self.dtype)
|
288 |
-
for i in range(self.config.num_hidden_groups)
|
289 |
-
]
|
290 |
-
|
291 |
-
def __call__(
|
292 |
-
self,
|
293 |
-
hidden_states,
|
294 |
-
attention_mask,
|
295 |
-
deterministic: bool = True,
|
296 |
-
output_attentions: bool = False,
|
297 |
-
output_hidden_states: bool = False,
|
298 |
-
return_dict: bool = True,
|
299 |
-
interv_type: str = "swap",
|
300 |
-
interv_dict: dict = {},
|
301 |
-
):
|
302 |
-
all_attentions = () if output_attentions else None
|
303 |
-
all_hidden_states = (hidden_states,) if output_hidden_states else None
|
304 |
-
|
305 |
-
for i in range(self.config.num_hidden_layers):
|
306 |
-
# Index of the hidden group
|
307 |
-
group_idx = int(i / (self.config.num_hidden_layers / self.config.num_hidden_groups))
|
308 |
-
layer_group_output = self.layers[group_idx](
|
309 |
-
hidden_states,
|
310 |
-
attention_mask,
|
311 |
-
deterministic=deterministic,
|
312 |
-
output_attentions=output_attentions,
|
313 |
-
output_hidden_states=output_hidden_states,
|
314 |
-
layer_id=i,
|
315 |
-
interv_type=interv_type,
|
316 |
-
interv_dict=interv_dict,
|
317 |
-
)
|
318 |
-
hidden_states = layer_group_output[0]
|
319 |
-
|
320 |
-
if output_attentions:
|
321 |
-
all_attentions = all_attentions + layer_group_output[-1]
|
322 |
-
|
323 |
-
if output_hidden_states:
|
324 |
-
all_hidden_states = all_hidden_states + (hidden_states,)
|
325 |
-
|
326 |
-
if not return_dict:
|
327 |
-
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
|
328 |
-
return FlaxBaseModelOutput(
|
329 |
-
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
|
330 |
-
)
|
331 |
-
|
332 |
-
class CustomFlaxAlbertEncoder(nn.Module):
|
333 |
-
config: AlbertConfig
|
334 |
-
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
335 |
-
|
336 |
-
def setup(self):
|
337 |
-
self.embedding_hidden_mapping_in = nn.Dense(
|
338 |
-
self.config.hidden_size,
|
339 |
-
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
340 |
-
dtype=self.dtype,
|
341 |
-
)
|
342 |
-
self.albert_layer_groups = CustomFlaxAlbertLayerGroups(self.config, dtype=self.dtype)
|
343 |
-
|
344 |
-
def __call__(
|
345 |
-
self,
|
346 |
-
hidden_states,
|
347 |
-
attention_mask,
|
348 |
-
deterministic: bool = True,
|
349 |
-
output_attentions: bool = False,
|
350 |
-
output_hidden_states: bool = False,
|
351 |
-
return_dict: bool = True,
|
352 |
-
interv_type: str = "swap",
|
353 |
-
interv_dict: dict = {},
|
354 |
-
):
|
355 |
-
hidden_states = self.embedding_hidden_mapping_in(hidden_states)
|
356 |
-
return self.albert_layer_groups(
|
357 |
-
hidden_states,
|
358 |
-
attention_mask,
|
359 |
-
deterministic=deterministic,
|
360 |
-
output_attentions=output_attentions,
|
361 |
-
output_hidden_states=output_hidden_states,
|
362 |
-
interv_type=interv_type,
|
363 |
-
interv_dict=interv_dict,
|
364 |
-
)
|
365 |
-
|
366 |
-
class CustomFlaxAlbertModule(nn.Module):
|
367 |
-
config: AlbertConfig
|
368 |
-
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
369 |
-
add_pooling_layer: bool = True
|
370 |
-
|
371 |
-
def setup(self):
|
372 |
-
self.embeddings = FlaxAlbertEmbeddings(self.config, dtype=self.dtype)
|
373 |
-
self.encoder = CustomFlaxAlbertEncoder(self.config, dtype=self.dtype)
|
374 |
-
if self.add_pooling_layer:
|
375 |
-
self.pooler = nn.Dense(
|
376 |
-
self.config.hidden_size,
|
377 |
-
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
378 |
-
dtype=self.dtype,
|
379 |
-
name="pooler",
|
380 |
-
)
|
381 |
-
self.pooler_activation = nn.tanh
|
382 |
-
else:
|
383 |
-
self.pooler = None
|
384 |
-
self.pooler_activation = None
|
385 |
-
|
386 |
-
def __call__(
|
387 |
-
self,
|
388 |
-
input_ids,
|
389 |
-
attention_mask,
|
390 |
-
token_type_ids: Optional[np.ndarray] = None,
|
391 |
-
position_ids: Optional[np.ndarray] = None,
|
392 |
-
deterministic: bool = True,
|
393 |
-
output_attentions: bool = False,
|
394 |
-
output_hidden_states: bool = False,
|
395 |
-
return_dict: bool = True,
|
396 |
-
interv_type: str = "swap",
|
397 |
-
interv_dict: dict = {},
|
398 |
-
):
|
399 |
-
# make sure `token_type_ids` is correctly initialized when not passed
|
400 |
-
if token_type_ids is None:
|
401 |
-
token_type_ids = jnp.zeros_like(input_ids)
|
402 |
-
|
403 |
-
# make sure `position_ids` is correctly initialized when not passed
|
404 |
-
if position_ids is None:
|
405 |
-
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
|
406 |
-
|
407 |
-
hidden_states = self.embeddings(input_ids, token_type_ids, position_ids, deterministic=deterministic)
|
408 |
-
|
409 |
-
outputs = self.encoder(
|
410 |
-
hidden_states,
|
411 |
-
attention_mask,
|
412 |
-
deterministic=deterministic,
|
413 |
-
output_attentions=output_attentions,
|
414 |
-
output_hidden_states=output_hidden_states,
|
415 |
-
return_dict=return_dict,
|
416 |
-
interv_type=interv_type,
|
417 |
-
interv_dict=interv_dict,
|
418 |
-
)
|
419 |
-
hidden_states = outputs[0]
|
420 |
-
if self.add_pooling_layer:
|
421 |
-
pooled = self.pooler(hidden_states[:, 0])
|
422 |
-
pooled = self.pooler_activation(pooled)
|
423 |
-
else:
|
424 |
-
pooled = None
|
425 |
-
|
426 |
-
if not return_dict:
|
427 |
-
# if pooled is None, don't return it
|
428 |
-
if pooled is None:
|
429 |
-
return (hidden_states,) + outputs[1:]
|
430 |
-
return (hidden_states, pooled) + outputs[1:]
|
431 |
-
|
432 |
-
return FlaxBaseModelOutputWithPooling(
|
433 |
-
last_hidden_state=hidden_states,
|
434 |
-
pooler_output=pooled,
|
435 |
-
hidden_states=outputs.hidden_states,
|
436 |
-
attentions=outputs.attentions,
|
437 |
-
)
|
438 |
-
|
439 |
-
class CustomFlaxAlbertForMaskedLMModule(nn.Module):
|
440 |
-
config: AlbertConfig
|
441 |
-
dtype: jnp.dtype = jnp.float32
|
442 |
-
|
443 |
-
def setup(self):
|
444 |
-
self.albert = CustomFlaxAlbertModule(config=self.config, add_pooling_layer=False, dtype=self.dtype)
|
445 |
-
self.predictions = FlaxAlbertOnlyMLMHead(config=self.config, dtype=self.dtype)
|
446 |
-
|
447 |
-
def __call__(
|
448 |
-
self,
|
449 |
-
input_ids,
|
450 |
-
attention_mask,
|
451 |
-
token_type_ids,
|
452 |
-
position_ids,
|
453 |
-
deterministic: bool = True,
|
454 |
-
output_attentions: bool = False,
|
455 |
-
output_hidden_states: bool = False,
|
456 |
-
return_dict: bool = True,
|
457 |
-
interv_type: str = "swap",
|
458 |
-
interv_dict: dict = {},
|
459 |
-
):
|
460 |
-
# Model
|
461 |
-
outputs = self.albert(
|
462 |
-
input_ids,
|
463 |
-
attention_mask,
|
464 |
-
token_type_ids,
|
465 |
-
position_ids,
|
466 |
-
deterministic=deterministic,
|
467 |
-
output_attentions=output_attentions,
|
468 |
-
output_hidden_states=output_hidden_states,
|
469 |
-
return_dict=return_dict,
|
470 |
-
interv_type=interv_type,
|
471 |
-
interv_dict=interv_dict,
|
472 |
-
)
|
473 |
-
|
474 |
-
hidden_states = outputs[0]
|
475 |
-
if self.config.tie_word_embeddings:
|
476 |
-
shared_embedding = self.albert.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
|
477 |
-
else:
|
478 |
-
shared_embedding = None
|
479 |
-
|
480 |
-
# Compute the prediction scores
|
481 |
-
logits = self.predictions(hidden_states, shared_embedding=shared_embedding)
|
482 |
-
|
483 |
-
if not return_dict:
|
484 |
-
return (logits,) + outputs[1:]
|
485 |
-
|
486 |
-
return FlaxMaskedLMOutput(
|
487 |
-
logits=logits,
|
488 |
-
hidden_states=outputs.hidden_states,
|
489 |
-
attentions=outputs.attentions,
|
490 |
-
)
|
491 |
-
|
492 |
-
class CustomFlaxAlbertForMaskedLM(FlaxAlbertPreTrainedModel):
|
493 |
-
module_class = CustomFlaxAlbertForMaskedLMModule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|