taka-yamakoshi
commited on
Commit
•
cd10873
1
Parent(s):
402ce08
test
Browse files
app.py
CHANGED
@@ -62,6 +62,7 @@ def annotate_mask(sent_id,sent):
|
|
62 |
st.write(f'Sentence {sent_id}')
|
63 |
input_sent = tokenizer(sent).input_ids
|
64 |
decoded_sent = [tokenizer.decode([token]) for token in input_sent[1:-1]]
|
|
|
65 |
char_nums = [len(word)+2 for word in decoded_sent]
|
66 |
cols = st.columns(char_nums)
|
67 |
if f'mask_locs_{sent_id}' not in st.session_state:
|
@@ -157,13 +158,22 @@ if __name__=='__main__':
|
|
157 |
with main_area.container():
|
158 |
sent_1 = st.session_state['sent_1']
|
159 |
sent_2 = st.session_state['sent_2']
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
input_ids_1 = tokenizer(sent_1).input_ids
|
162 |
input_ids_2 = tokenizer(sent_2).input_ids
|
163 |
input_ids = torch.tensor([input_ids_1,input_ids_2])
|
164 |
|
165 |
outputs = SkeletonAlbertForMaskedLM(model,input_ids,
|
166 |
-
interventions = {0:{'lay':[(head_id,17,[0,1]) for head_id in range(64)]
|
|
|
|
|
|
|
167 |
logprobs = F.log_softmax(outputs['logits'], dim = -1)
|
168 |
preds = [torch.multinomial(torch.exp(probs), num_samples=1).squeeze(dim=-1) for probs in logprobs[0][1:-1]]
|
169 |
st.write([tokenizer.decode([token]) for token in preds])
|
|
|
62 |
st.write(f'Sentence {sent_id}')
|
63 |
input_sent = tokenizer(sent).input_ids
|
64 |
decoded_sent = [tokenizer.decode([token]) for token in input_sent[1:-1]]
|
65 |
+
st.session_state[f'decoded_sent_{sent_id}'] = decoded_sent
|
66 |
char_nums = [len(word)+2 for word in decoded_sent]
|
67 |
cols = st.columns(char_nums)
|
68 |
if f'mask_locs_{sent_id}' not in st.session_state:
|
|
|
158 |
with main_area.container():
|
159 |
sent_1 = st.session_state['sent_1']
|
160 |
sent_2 = st.session_state['sent_2']
|
161 |
+
show_annotated_sentence(st.session_state['deceded_sent_1'],
|
162 |
+
option_locs=st.session_state['option_locs_1'],
|
163 |
+
mask_locs=st.session_state['mask_locs_1'])
|
164 |
+
show_annotated_sentence(st.session_state['deceded_sent_2'],
|
165 |
+
option_locs=st.session_state['option_locs_2'],
|
166 |
+
mask_locs=st.session_state['mask_locs_2'])
|
167 |
|
168 |
input_ids_1 = tokenizer(sent_1).input_ids
|
169 |
input_ids_2 = tokenizer(sent_2).input_ids
|
170 |
input_ids = torch.tensor([input_ids_1,input_ids_2])
|
171 |
|
172 |
outputs = SkeletonAlbertForMaskedLM(model,input_ids,
|
173 |
+
interventions = {0:{'lay':[(head_id,17,[0,1]) for head_id in range(64)],
|
174 |
+
'qry':[(head_id,17,[0,1]) for head_id in range(64)],
|
175 |
+
'key':[(head_id,17,[0,1]) for head_id in range(64)],
|
176 |
+
'val':[(head_id,17,[0,1]) for head_id in range(64)]}})
|
177 |
logprobs = F.log_softmax(outputs['logits'], dim = -1)
|
178 |
preds = [torch.multinomial(torch.exp(probs), num_samples=1).squeeze(dim=-1) for probs in logprobs[0][1:-1]]
|
179 |
st.write([tokenizer.decode([token]) for token in preds])
|